

جامعة محمد بوضياف - المسيلة Université Mohamed Boudiaf - M'sila

# **Artificial Learning Models**

**Lecture 5 : Support Vector Machine** 

By : Dr. Lamri SAYAD

2023

# Agenda



# Introduction

- Supervied learning model
  - Used for classification
  - But also for regression
- Developed at AT&T Bell Laboratories by Vladimir Vapnik with colleagues (Boser et al., 1992, Guyon et al., 1993, Cortes and Vapnik, 1995, Vapnik et al., 1997)

• Is not a probabilistic classifier

# What is SVM ?

- During training:
  - SVM constructs a hyperplane or set of hyperplanes in a high or infinitedimensional space
  - SVM maps training examples to points in space so as to maximize the width of the gap between the classes.
- During test or prediction:
  - New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall.

## What is SVM ?



# How does SVM work ?

- It is defined in terms of the support vectors only,
- Don't have to worry about other observations
- The margin is made using the points which are closest to the hyperplane (support vectors)
- Remember
  - In logistic regression, the classifier is defined over all the points.

# What is SVM ? SVM vs Logistic regression

- Don't get confused
  - Both the algorithms try to find the best hyperplane
- The difference :
  - logistic regression is a probabilistic approach
  - SVM is based on statistical approaches.
- SVM or Logistic regression
  - SVM works best when the dataset is small and complex.
  - Use logistic regression first and see how does it perform, if it fails to give a good accuracy you can go for SVM without any kernel
  - Logistic regression and SVM without any kernel have similar performance

# **Types of SVM algorithms**

- Linear SVM
  - The data is perfectly linearly separable
  - Performs linear classification
- Non-linear SVM
  - Data is not linearly separable
  - Perform a non-linear classification using some advanced techniques like kernel tricks to classify them.
  - kernel tricks ??!!

# **SVM Terminology**

### • Hyperplane

 Hyperplane is the decision boundary that is used to separate the data points of different classes in a feature space.

#### Support vectors

- These are the points that are closest to the hyperplane.
- A separating line will be defined with the help of these data points.

### Margin

- It is the distance between the hyperplane and the support vectors.
- Large margin is considered a good margin.
- Two types of margins hard margin and soft margin.

# **SVM Terminology**

- Kernel
- Hard Margin
- Soft Margin
- C

### • Hinge Loss

## **Support vectors and Margin**



# Hard margin

X2

- Hyperplane with :
  - Perfect separation
  - Margin is maximized

Hard Margin



## Soft margin

# How does SVM classify these data?



# Soft margin

X2

- The blue ball in the boundary of red ones is an outlier of blue balls.
- SVM ignore the outlier and finds the best hyperplane that maximizes the margin.
- SVM is robust to outliers.

How ??



X1

# Soft margin

- Finds the maximum margin
- Adds a penalty each time a point crosses the margin.





# The kernel trick

- create a new variable y<sub>i</sub> as a function of distance from origin o.
- A non-linear function that creates a new variable is referred to as a kernel.



## The kernel trick

 Representing data in higher dimensional spaces to find hyperplanes that might not be apparent in lower dimensions

# **Kernel functions**

- Polynomial Kernel
- Sigmoid Kernel

Linear :  $K(w, b) = w^T x + b$ Polynomial :  $K(w, x) = (\gamma w^T x + b)^N$ Gaussian RBF:  $K(w, x) = \exp(-\gamma ||x_i - x_j||^n)$ Sigmoid : $K(x_i, x_j) = \tanh(\alpha x_i^T x_j + b)$ 

- RBF Kernel
- Bessel function kernel
- Anova Kernel

# How to choose the right kernel?

- The performance of the model depends on chosen kernel function
- Choosing a kernel totally depends on what kind of dataset are you working on
  - If it is linearly separable then you must opt for linear kernel function
  - It is recommended to start with a hypothesis that the data is linearly separable

• Usually, we use SVM with RBF and linear kernel function

## How to choose the right kernel? Example



for this kind of dataset, we can use RBF without even a second thought because it makes decision boundary like this:



# Mathematical intuition of SVM

- Consider a binary classification problem with two classes, labeled as +1 and -1.
- The equation for the linear hyperplane can be written as:

$$w^T x + b = 0$$

- The vector W represents the normal vector to the hyperplane. i.e the direction perpendicular to the hyperplane.
- The distance between a data point x\_i and the decision boundary can be calculated as:

$$d_i = \frac{w^T x_i + b}{||w||}$$

• where ||w|| represents the Euclidean norm of the weight vector w.

## Mathematical intuition of SVM Optimization

• For Hard margin linear SVM classifier:

 $\underset{w,b}{\operatorname{minimize}} \frac{1}{2} w^T w = \underset{W,b}{\operatorname{minimize}} \frac{1}{2} \|w\|^2$ subject to  $y_i(w^T x_i + b) \ge 1$  for  $i = 1, 2, 3, \cdots, m$ 

• For Soft margin linear SVM classifier:

 $\begin{array}{l} \underset{w,b}{\text{minimize }} \frac{1}{2}w^Tw + C\sum_{i=1}^m \zeta_i\\ \text{subject to } y_i(w^Tx_i + b) \geq 1 - \zeta_i \ and \ \zeta_i \geq 0 \ for \ i = 1, 2, 3, \cdots, m \end{array}$ 

# **Advantages and Disadvantages of SVM**

### Advantages of SVM

- SVM works better when the data is Linear
- It is more effective in high dimensions
- SVMs are less prone to overfitting than other algorithms such as neural networks.
- SVM is not sensitive to outliers
- With the help of the kernel trick, we can solve any complex problem
- Can help us with Image classification

### Disadvantages of SVM

- Choosing a good kernel is not easy
- It doesn't show good results on a big dataset
- The SVM hyperparameters are Cost -C and gamma. It is not that easy to fine-tune these hyper-parameters. It is hard to visualize their impact

## **SVM with sklearn**

- Library : from sklearn import svm
- **define the model** : model = svm.SVC(kernel='linear', C=1.0)
- **train the model :** model.fit(training\_X, training\_y)
- make non-linear algorithm : for model : nonlinear\_model = svm.SVC(kernel='rbf', C=1.0)