
.NET in Component-Based Development 1 Dr Raouf Lakehal-Ayat

JavaBean in Component-Based Development

1. Introduction

JavaBeans are an essential aspect of component-based development in Java. Essentially, JavaBeans are

reusable software components that follow a specific convention in Java programming. Here's a brief

introduction to JavaBeans in the context of component-based development

2. What is a JavaBean?

• A JavaBean is a special kind of Java class. It adheres to certain coding conventions, which include

having a public no-argument constructor, providing getters and setters for accessing properties,

and being serializable. This standardization allows JavaBeans to be easily reused, manipulated,

and connected with other Java components.

• In component-based development, software is constructed using reusable components. Each

component is a self-contained, modular unit with a well-defined interface. JavaBeans are ideal

for this approach because JavaBeans are a component model or a convention within Java. They

are a way of structuring Java classes so that they adhere to certain standards, making them

reusable, interchangeable, and manageable components.

3. JavaBean conventions

JavaBeans are a convention or a set of standards in Java programming for creating reusable software

components. These conventions are what differentiate JavaBeans from regular Java classes, making them

more suited for reuse in different environments, particularly in GUI toolkits and enterprise software

development:

1. Property Accessor Methods: JavaBeans must provide standard getter and setter methods for

accessing properties. This is more structured than typical Java classes, where property access

might not follow a standardized naming convention. The naming follows getPropertyName() for

getters and setPropertyName(value) for setters.

2. Default Constructor: JavaBeans require a public no-argument constructor. This is not a

requirement for general Java classes, but it's essential for JavaBeans to ensure they can be

instantiated easily by various tools and frameworks.

3. Serializable Interface (Recommended): While not strictly enforced, JavaBeans are typically

expected to implement the Serializable interface, enabling them to be serialized and deserialized.

This is especially important for beans that need to be persisted or transmitted.

.NET in Component-Based Development 2 Dr Raouf Lakehal-Ayat

4. Introspection: JavaBeans are designed to support introspection. This means that the properties,

events, and methods of a bean can be discovered dynamically at runtime, primarily due to the

standardized naming conventions of getters and setters.

5. Event Handling (Optional): JavaBeans may support bound properties and property change

listeners. This convention allows beans to notify other components when a property changes,

which is not a typical feature in standard Java classes.

These conventions are what differentiate JavaBeans from regular Java classes, making them more

suited for reuse in different environments, particularly in GUI toolkits and enterprise software

development.

4. Advantages of Using JavaBeans:

JavaBeans play a crucial role in the Java ecosystem, particularly in enabling a component-based

approach to software development. They are a popular choice for developers looking to build modular,

Java applications thanks to:

• Reusability: Once a JavaBean is created, it can be reused in different applications.

• Ease of Use: The standardized nature of JavaBeans makes them easy to use and integrate into

applications.

• Encapsulation: JavaBeans encapsulate data and behavior, enhancing maintainability and

readability.

• Tool Support: Many development environments provide support for JavaBeans, offering

features like visual manipulation and easy integration.

5. Enterprise JavaBeans (EJB):

Enterprise JavaBeans (EJB) is a server-side software component that encapsulates the business logic

of an application. It is a part of the Java EE (Enterprise Edition) platform while JavaBean is one of Java

Standard Edition SE, EJB provides a system for developing and deploying robust, scalable, and

transactional Java applications. EJBs are used primarily in enterprise-level applications for handling

complex business processes, database interactions, and distributed computing.

Key Features of EJB

1. Server-Side Component: EJBs run on a server, typically in an EJB container provided by a Java EE

application server.

2. Transaction Management: EJBs have built-in support for managing transactions, which is

essential for applications dealing with critical data.

.NET in Component-Based Development 3 Dr Raouf Lakehal-Ayat

3. Security Features: They offer declarative security, allowing developers to manage authorization

and authentication at a high level.

4. Remote and Local Access: EJBs can be accessed both locally and remotely, making them suitable

for distributed applications.

5. Types of EJBs: There are several types of EJBs, each type of bean serves a different purpose in

enterprise applications, allowing for various functionalities such as managing business logic,

handling asynchronous events, and managing persistent data:

• Session Beans:

1. Stateless: These beans don't maintain any conversational state for a specific client

across method invocations.

2. Stateful: Unlike stateless beans, these maintain conversational state for a specific

client across method invocations.

• Message-Driven Beans: MDBs are used in Java EE for asynchronous processing based on

messages from a messaging system, like JMS (Java Message Service). They are not directly

invoked by a client but are triggered by messages arriving at a specific destination.

• Entity Beans: In older versions of EJB (prior to EJB 3.0), Entity Beans were used to

represent persistent data in a database. They aimed to encapsulate business logic and

data in a way that could be stored and retrieved from a database. However, due to

complexities and performance issues, the concept of Entity Beans underwent changes in

later versions of EJB and is not commonly used in the same way anymore. Instead, Object-

Relational Mapping (ORM) frameworks like Hibernate are favored for persistence. (now

less common with the adoption of JPA for persistence).

Fig.1: Types of Ejbs

.NET in Component-Based Development 4 Dr Raouf Lakehal-Ayat

6. Scalability and Robustness: EJBs are designed for high scalability and robustness in enterprise

applications.

Key Differences Between EJB and JavaBean

The following table summarizes the key differences between Enterprise JavaBeans (EJB) and JavaBeans:

Aspect Enterprise JavaBeans (EJB) JavaBeans

Purpose

Designed for enterprise-level

applications, handling business logic,

transactions, and distributed

computing.

Used for encapsulating data and logic,

suitable for a wide range of Java

applications, including GUI components.

Environment

Run in an EJB container within a Java

EE server.

Do not require a specific container or

server; can be used in any Java

environment, including Java SE.

Complexity

More complex, with advanced features

for enterprise applications.

Simpler and more lightweight, with a

focus on reusability and ease of use.

Component

Model

Server-side component model, suitable

for distributed applications and

services.

General-purpose software component

model for modular and reusable code.

Key Features

Support transaction management,

security, concurrency, and remote

method invocation.

Typically lack built-in support for

transactions, security, and remote

access.

Remote Access

Can be accessed both locally and

remotely, enabling distributed

computing.

Primarily used within the same runtime

environment; not designed for remote

access.

Usage in

Applications

Used in scalable, multi-user, and secure

enterprise applications.

Used in a variety of applications,

including desktop, web, and smaller-

scale enterprise applications.

Design and

Deployment

Require specific deployment

descriptors or annotations for

deployment in an EJB container.

Simpler to design and deploy, with no

specific deployment requirements.

Table 1 : JavaBeans vs E javaBeans

T

.NET in Component-Based Development 5 Dr Raouf Lakehal-Ayat

5. Constructing a JavaBean:

Constructing a JavaBean involves following certain conventions in Java programming. A JavaBean is

essentially a Java class that adheres to specific design patterns. Here's a step-by-step guide on how to

construct a basic JavaBean:

1. Create a Java Class: Start by creating a new Java class in your IDE or text editor. The class name

should follow Java naming conventions (e.g., MyBean).

2. Default Constructor: Include a public no-argument constructor. This is necessary for the

instantiation of the JavaBean by tools and frameworks which require a no-argument constructor

to create the bean instance.

public class MyBean {
 public MyBean() {
 // Constructor code here
 }
}

3. Private Properties: Define private properties (variables) within the class. These are the attributes

you want to encapsulate within your bean.

private String name;
private int age;

4. Getter and Setter Methods: Provide public getter and setter methods for accessing the

properties. The naming convention is getPropertyName for getters and setPropertyName for

setters.

public String getName() {
return name;
}
public void setName(String name) {

this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {

this.age = age;
}

5. Implement Serializable (Optional but Recommended): Implement the Serializable interface. This

is not a strict requirement but is considered a good practice, especially if the bean's state needs

to be saved and restored.

public class MyBean implements Serializable {
 // Class code here
}

.NET in Component-Based Development 6 Dr Raouf Lakehal-Ayat

6. Add Additional Business Logic (Optional): Include any additional methods relevant to the bean’s

intended functionality. These methods can contain business logic or utility functions.

7. Test the Bean: Once your JavaBean is created, you should write some test code to instantiate it,

set its properties, and call its methods to ensure it behaves as expected.

Example:

public class MyBean implements Serializable {
private String name;
private int age;
public MyBean() {
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;

}
public int getAge() {
return age;
}
public void setAge(int age) {

this.age = age;
}
// Additional methods...

}

This simple example demonstrates the basic structure of a JavaBean. Depending on your use case,

JavaBeans can be more complex, including features like property change support, bound properties, or

custom event handling.

.NET in Component-Based Development 7 Dr Raouf Lakehal-Ayat

Lab session1: Introduction to Creating JavaBeans with NetBeans

Objective: To teach beginners how to create a simple JavaBean using the NetBeans IDE.

Estimated Duration: 25 minutes

Prerequisites: Basic knowledge of Java programming.

Materials Required: Computer with NetBeans installed

Step 1 - Project Setup (5 minutes):

Open NetBeans, create a new Java project: File -> New Project -> Java -> Java Application, Name the

project (e.g., JavaBean).

Step 2 - Creating the JavaBean Class (10 minutes):

In the newly created project, right-click on the Source Packages folder, select New -> Java Class, Name

the class Person and click "Finish", Write the following JavaBean:

.NET in Component-Based Development 8 Dr Raouf Lakehal-Ayat

Step 3 - Using the JavaBean (10 minutes):

Create a new Java class in the same package, in this class, write a program to instantiate a Person object,

set its properties using the setters, and display these properties using the getters, Run the program to see

the results.

Lab session2:

Objective:

In addition to getters and setters, JavaBeans often follow other conventions such as having a no-argument

constructor and implementing Serializable, to demonstrate the implementation of JavaBean conventions

including getters, setters, a no-argument constructor, and Serializable interface using NetBeans.

Estimated Duration: 25 minutes

Prerequisites: Basic understanding of Java programming.

Materials Required: Computer with NetBeans installed

Step 1 - Project Setup (1 minute):

Create a new Java project in NetBeans as explained earlier.

Step 2 - Creating the class "Person" (our bean) (5 minutes):

1. Create a Person class as before, but add a no-argument constructor and implement Serializable:

you can add this code:

.NET in Component-Based Development 9 Dr Raouf Lakehal-Ayat

import java.io.Serializable;

public class Person implements Serializable {

 private String firstName;

 private String lastName;

 private int age;

 public Person() {

 // No-argument constructor

 }

Step 3 - Using the JavaBean (20 minutes):

Update the JavaBean class (our main class) to demonstrate serialization and
deserialization of the Person object.

