
RMI in Component-Based Development 1 Dr Raouf Lakehal-Ayat

RMI in Component-Based Development

1. Introduction

RMI (Remote Method Invocation) is Java API, it is an integral part of component-based

development, offering a means to interact with distributed components or objects seamlessly

across different machines on a network.

2. RMI is an API

An API, or Application Programming Interface, serves as a set of rules, protocols, and tools

that allows different software applications to communicate and interact with each other. the API

facilitates communication between different software systems. It specifies how different

software components should interact, making it easier for developers to use predefined

functions to perform specific tasks without needing to understand the complexities of the

underlying code or infrastructure.

APIs come in various forms:

1. Web APIs: used to enable remote communication between different web services or

systems.

2. Library APIs: These are sets of functions and procedures exposed by libraries or

frameworks to enable developers to use their functionalities within their own

applications.

3. Operating System APIs: These provide interfaces for the operating system services.

Developers can use these APIs to access system functionalities like file systems, hardware

devices, memory management, etc.

3. RMI is a JAVA API

RMI allows objects in a Java Virtual Machine (JVM) to invoke remoted methods on objects

residing in another JVM as if they were local, which may be running on different physical

machines across a network. In other words: RMI enables developers to create distributed

applications.

RMI in Component-Based Development 2 Dr Raouf Lakehal-Ayat

4. RMI architecture

The architecture of Java RMI involves several components and layers that work together to

enable communication and interaction between distributed Java objects. In an RMI application,

we write two programs, a server program (resides on the server) and a client program (resides

on the client). Here's an overview of the key elements:

1. Client: The client initiates requests for remote method invocations. It interacts with

remote objects as if they were local, invoking methods on these objects.

2. Server: The server hosts the remote objects and provides the services that clients request.

It listens for incoming requests, processes them, and executes the methods on the remote

objects.

3. Stub and Skeleton:

• Stub: On the client-side, the stub acts as a local representative of the remote

object. It receives method calls from the client and forwards them to the actual

remote object on the server. The stub handles the serialization of method

parameters and the transmission of requests to the server.

• Skeleton: On the server-side, the skeleton receives incoming requests from the

stub, deserializes the parameters, and delegates the method invocations to the

actual implementation of the remote object.

4. Remote Reference Layer: This layer manages the creation, serialization, transmission,

and management of references to remote objects. It handles the serialization and

deserialization of object references to facilitate their transmission between JVMs.

5. TCP/IP: Java RMI uses the TCP/IP protocol suite as the underlying transport mechanism

for communication between distributed Java objects. TCP/IP ensures reliable

transmission of data packets over the network.

6. JRMP (Java Remote Method Protocol): JRMP is the default protocol used by Java RMI to

enable remote method invocations between Java-based applications. It operates at a

higher level than TCP/IP and is specifically designed for communication between Java

objects.

RMI in Component-Based Development 3 Dr Raouf Lakehal-Ayat

7. Registry: The registry acts as a directory service that allows clients to look up and obtain

references to remote objects hosted on the server. It maintains a mapping of names to

remote object references.

The flow of communication involves the client making requests through the stub, which

marshals the method parameters and sends them over the network using the underlying TCP/IP

protocol. The server receives these requests through the skeleton, which then invokes the

methods on the actual remote objects. The Remote Reference Layer manages the serialization

and transmission of references, while the registry helps in locating remote objects.

 Fig.1: RMI architecture

RMI in Component-Based Development 4 Dr Raouf Lakehal-Ayat

LAB SESSION

Let's assume you have a remote service that provides a method to add two numbers, here is an

 example using NetBeans to create an RMI project.

Step 1: Create a project in NetBeans

1. Open NetBeans and create a new Java project: File -> New Project -> Java -> Java Application.

2. Name the project (e.g., RMICalculator) and click "Next" to choose the project location.

3. In the project configuration step, make sure to check the "Create Main Class" box and name it,

for example, CalculatorServer. This will create a class with a main method to start the RMI server.

4. Click "Finish" to complete creating the project.

Step 2: Define the remote interface

1. In the project's package, create a new interface named RemoteCalculator:

2. Right-click on the package -> New -> Java Interface

Step 3: Implement the remote interface

Create a class implementing the RemoteCalculator interface. Name it RemoteCalculatorImpl.

Right-click on the package -> New -> Java Class

RMI in Component-Based Development 5 Dr Raouf Lakehal-Ayat

Step 4: Create the server

Modify the main class (CalculatorServer) to initialize the RMI server and register the remote object.

RMI in Component-Based Development 6 Dr Raouf Lakehal-Ayat

Step 5: Create the client

Create a new class for the RMI client (CalculatorClient) that will use the remote service.

Execution:

1. Compile the files, Start the server by executing CalculatorServer.

2. Run the client by executing CalculatorClient.

This example demonstrates how RMI allows a client to call the add() method on a remote object

(RemoteCalculatorImpl) using the RemoteCalculator interface.

