University of M'Sila Maths & CS Faculty

Exam (S1) **Machine Structure 1**

Date: 01/14/2024
Duration: 01h:30

Computer Science Department

First and Last Name .	(A) ممنوع استخدام الآله الحاسبة والهاتف النقال					
First and Last Name:			Group:			
Exercise 1: (4.5 Pts = 3.5(2 1) Make the following conve		+ 0.5) +1)				
10	2	8	16	7		
$\frac{10}{16^2 + 8^2 + 2^4 + 2^2 + 16^{-1} + 8^{-1}}$		0	10			
10 +0 +2 +2 +10 +0						
		76,5				
			AE,6			
39 ₍₁₆₎ =	ration in Excess-3: (0.75 \times 3) + 2.25 (1.5) orresponding to the oct	(2) (65 ₍₈₎ + 54 ₍₁₆₎ (4+0.75))				
is represented in S-Iviag, 1 sc	$, 2 \text{ SC}: 334_{(8)}$			ntent		
S-Mag:	, 2 SC: 354 ₍₈₎ =	=		ntent		
S-Mag:	=			entent		
S-Mag:	= =			ntent		
S-Mag:	ations on 9 bits in 1's (and give the results i		entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:			
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:			
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		
S-Mag:	ations on 9 bits in 1's (and give the results i	n decimal:	entent		

Exercise 3: (4 pts = 2 (1+1) + 2 (1+1))

Taking the notation of the simple precision floating point (32 bits) of the IEEE 754 standard

1) Give the representation in **SP floating point** (32 bits) of the following numbers:

$$-43.625 \times 2^{-107}_{(10)}$$
 /// $+53.75 \times 2^{-134}_{(10)}$

2) Put in the form $\pm a \times 2^b$ the two following hexadecimal contents:

$$X = 24E00000_{(16)}$$
, $Y = 80500000_{(16)}$ (a and 2^b are decimals)

Exercise 4: (7 pts = 1.5 + 1.5 + 0.75 + 0.75 + 2.5 (1 + 1.5))

$$F1(X,Y,Z) = (X+Y)Z + \overline{X}(\overline{Y}+Z) + \overline{Y}$$

$$F2(A,B,C) = (A+\overline{B}+\overline{C})(A+\overline{B}+C)(A+B+\overline{C})$$

$$F3(A, B, C, D) = \sum (0, 1, 3, 5, 6, 10, 15) + \Phi (2, 4, 7, 11)$$

- 1. Simplify F1 using Algebraic simplification and write the truth table of F1.
- 2. Write the two canonical forms of **F1**.
- **3.** Draw the logigram of *F***1** (simplified) only with NAND gates.
- **4.** Simplify **F2** using Algebraic simplification.
- **5.** Simplify *F***2** and *F***3** using Karnaugh maps in the form of Sum of Products (SoP) and Product of Sums (PoS).