MOHAMED BOUDIAF UNIVERSITY OF MSILA
Faculty of Mathematics and Computer Science
Computer Science Department
University year :2023/2024

1.st year bachelor's degree - Semester 1

Final Exam in Analysis 1
Date : 15/01/2024 Duration : 1 h 30 m

Course questions : (05 Pt)

1. Using the definition of limit, verify that $\lim _{n \rightarrow \infty}\left[1+\frac{(-1)^{n}}{n}\right]=1$.
2. Write Rolle's theorem and applying it on the function $x \mapsto \sin x$ in the interval $[0, \pi]$.

3 . Write the Intermediate value theorem.

Exercise 1 : ($05,5 \mathrm{Pt}$)
$\left(U_{n}\right)$ numerical sequence defined by

$$
\left\{\begin{array}{l}
U_{0}=1, \\
U_{n+1}=\sqrt{6+U_{n}}, \quad \forall n \in \mathbb{N} .
\end{array}\right.
$$

1. By induction, show that $\left.\forall n \in \mathbb{N}: U_{n} \in\right] 0,10[$.
2. By induction, show that $\left(U_{n}\right)$ is increasing.
3. Deduce that $\left(U_{n}\right)$ is convergent and find its limit.

Exercise 2 : ($04,5 \mathrm{Pt}$)
f real function defined by

$$
\left\{\begin{array}{l}
\cos ^{2}(\pi x) \quad \text { if } \quad x \leq 1 \\
1+\frac{\ln (x)}{x} \quad \text { if } \quad x>1
\end{array}\right.
$$

1. Find the definition domain of f.
2. Study the continuity and the differentiability of f on their domain of definition.

Exercise 3 (05 Pt) :
Let f real function defined on $]-2,+\infty[$ by the following relation :

$$
f(x)=-x+\ln (x+2)
$$

Prove that the equation $f(x)=0$ has exactly two solutions c_{1} and c_{2} such that $-2<c_{1}<0<c_{2}$.

0.1 Solution

Course questions

1. We have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} u_{n}=l \Leftrightarrow \forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}(n>N):\left|u_{n}-l\right|<\epsilon \tag{0.5Pt}
\end{equation*}
$$

So $\left|1+\frac{(-1)^{n}}{n}-1\right|=\frac{1}{n}<\epsilon$, when $n>N=\left[\frac{1}{\epsilon}\right]$
2. Theorem 1 Rolle's theorem. If f is continuous on a closed interval $[a, b]$, and differentiable on the open interval $] a, b[$, and $f(a)=f(b)$, then there exists $c \in] a, b[$ such that $f^{\prime}(c)=0 . \quad(01 \mathrm{Pt})$

Application : \sin is continuous on $[0, \pi]$, differentiable on $] 0, \pi[$ and $\sin (0)=\sin (\pi)=$ 0 , then according to the Rolle's theorem there exists $c \in] 0, \pi[$ such that

$$
\cos c=0 \Leftrightarrow c=\frac{\pi}{2} . \quad(01 P t)
$$

3. Theorem 2 Intermediate value theorem: If the function f is continuous in the bounded and closed $[a, b]$ interval, then every value y between $f(a)$ and $f(b)$ is attained c in $[a, b]$, such that $y=f(c) \quad$ (1.5 Pt)

In logical symbolism this theorem has the following expression :

$$
f \in \mathcal{C}([a, b]), \text { and } f(a) . f(b)<0 \Rightarrow \exists c \in] a, b[, \text { such that } f(c)=0
$$

Exercise 1 :

1. For $\left.n=0, U_{0}=1 \in\right] 0,10\left[\right.$. true. We suppose that $\left.U_{n} \in\right] 0,10\left[\right.$ i.e $0<U_{n}<10$. So

$$
\begin{equation*}
6<U_{n}+6<16 \Rightarrow \sqrt{6}<\sqrt{6+U_{n}}<4, \quad(0.5 P t) \tag{0.5Pt}
\end{equation*}
$$

then

$$
\left.0<\sqrt{6}<U_{n+1}<4<10, \quad \text { hence }: \quad U_{n+1} \in\right] 0,10[. \quad(0.5 P t)
$$

2. By induction we must prove that $\left(U_{n}\right)$ is increasing $\forall n \in \mathbb{N}: U_{n} \leq U_{n+1}$

$$
\text { For } n=0, U_{0}=1, U_{1}=\sqrt{6+1}=\sqrt{7} \text {, so } U_{0} \leq U_{1} . \quad(01 \mathrm{Pt})
$$

We suppose that

$$
U_{n} \leq U_{n+1} \Rightarrow 6+U_{n} \leq 6+U_{n+1} \Rightarrow \sqrt{6+U_{n}} \leq \sqrt{6+U_{n+1}} \Rightarrow U_{n+1} \leq U_{n+2}
$$

then $\left(U_{n}\right)$ is increasing. (01 Pt)
3. $\left(U_{n}\right)$ is increasing and majorante (bounded from above) then $\left(U_{n}\right)$ is convergent. (0.5 $\mathrm{Pt})$ let l its limit, l verify the equation

$$
l=\sqrt{6+l} \Leftrightarrow l^{2}-l-6=0 \Leftrightarrow l=-2 \text { or } l=3(0.5+0.5 P t)
$$

$l>0, \forall n \in \mathbb{N}: U_{n}>0, \quad$ then $l=3 . \quad(0.5 P t)$
Exercise 2 : The domain of definition is $D=\mathbb{R} \quad(0.5 \mathrm{Pt})$

1. The continuity of f on \mathbb{R}

- On $]-\infty, 1[, f$ is continuous (product two continuous functions.) (0.25 Pt)
- On $] 1,+\infty[, f$ is continuous (sum and fractions two continuous functions). (0.25 Pt)
- The continuity at $x_{0}=1$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \cos ^{2}(\pi x)=(-1)^{2}=1=f(1) ;(0.5 P t)
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(1+\frac{\ln x}{x}\right)=1=f(1) ;(0.5 P t)
$$

then f is continuous at 1 because

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1) ;
$$

from which f is continuous on \mathbb{R}. (0.5 Pt)
2. The differentiability of f on \mathbb{R}

- On $]-\infty, 1[, f$ is differentiable (product two differentiable functions.) (0.25 Pt)
- On $] 1,+\infty[, f$ is differentiable (sum and fractions two differentiable functions).(0.25 Pt)
- The differentiability of f at $x_{0}=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{\cos ^{2}(\pi x)-1}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{-2 \pi \sin (\pi x) \cos (\pi x)}{1}=0(0.75 P t) \\
& \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{1+\frac{\ln x}{x}-1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{\ln x}{x(x-1)}=\lim _{x \rightarrow 1^{+}} \frac{1}{x(2 x-1)}=1(0.75 P t)
\end{aligned}
$$

Then f is not differentiable on \mathbb{R}

Exercise 4 :

Note that $f^{\prime}(x)=-1+\frac{1}{x+2}=\frac{-1-x}{x+2}$. then $f^{\prime}(x)=0 \Leftrightarrow x=-1$
So, on $]-2,-1$], the function f is strictly increasing (0.5 Pt)
on $[-1,+\infty[$, the function f is strictly decreasing (0.5 Pt)
on the other hand, we have

$$
\lim _{x \rightarrow-2} f(x)=-\infty \text { and } \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}-x\left[\frac{\ln (x+2)}{-x}+1\right]=-\infty \quad(0.25+0.25 P t)
$$

Thus

1. On] $-2,-1$], we have

- f is continuous $(0,25)$
$-\left(\lim _{x \rightarrow-2} f(x)\right) \cdot f(-1)=-\infty \quad(0.5 \mathrm{Pt})$
- f is strictly increasing.

Then, according to the intermediate value theorem $\left.\left.\exists!c_{1} \in\right]-2,-1\right] \quad(0.5 \mathrm{Pt})$
2. on $[-1,0]$, since $f(-1)=1$ and $f(0)=\ln (2)>0$ then the equation $f(x)=0$ has not solution (0.5 Pt)
3. On $[0,+\infty[$, we have

- f is continuous $(0,25)$
- $f(0) \cdot\left(\lim _{x \rightarrow=+\infty} f(x)\right)=-\infty<0$
- f is strictly decreasing

Then, according to the intermediate value theorem $\exists!c_{2} \in[0,+\infty[$

