TP N°V: Titration by the Oxidation-Reduction Method

Case: Manganimetry

I. Generalities:

Oxidation-reduction reactions are electron exchange reactions involving electron acceptors and donors. Oxidants have the ability to capture electrons, while reducers can donate electrons. In the human body, oxidation-reduction reactions provide energy for its natural activities. These reactions require either O_2 or H_2 . If the substances in the body react with or bind to O_2 , oxidation occurs, or if they react with or bind to H_2 , reduction occurs (or releases O_2).

Oxidants and reducers are used in disinfecting tissues contaminated with blood (hospitals) or dyes, treating infections, wounds such as Dakin, hydrogen peroxide, bleach. The reaction defining the relationship between a reducer and an oxidant is:

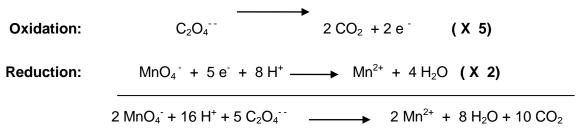
	(oxidation)			
Reducer	${\longleftarrow}$	Oxidant	+	n e
donor	(Reduction)	acceptor		

In these reactions, the reducer oxidizes by gaining electrons, while the oxidant reduces by losing electrons. **Examples:**

- The transition of iron "Fe" into a solution corresponds to an oxidation.

Fe \rightarrow Fe²⁺ + 2 e⁻ - The deposition of copper "Cu" from a solution of Cu²⁺ ions corresponds to a reduction.

 $Cu^{2+} + 2e^{-} \longrightarrow Cu$


Below are the oxidation-reduction couples and their classification in ascending order.:

Major oxidizing agents :	Li ⁺	Zn ²⁺	Fe ²⁺	H⁺	I ₂	Fe ³⁺	O ₂	MnO ₄ ⁻	F ₂
Corresponding reduced forms:	Li	Zn	Fe	н	Ι.	Fe ²⁺	H ₂ O	Mn ²⁺	→ F

II. Main objective of the first experiment (Manganometry):

Determine the normality of a solution of FeSO₄.

 Principle: The normality of FeSO₄ is determined using the oxidation reaction with potassium permanganate KMnO₄ in an acidic medium. However, it is essential to first determine the normality of KMnO₄ (since it is unstable, and as it has been prepared a week ago, it is preferable to determine its normality). 2. **KMnO₄ titration:** Determination of the normality of the KMnO₄ solution in an acidic medium in the presence of oxalic acid ($H_2C_2O_4$, 2 H_2O). It is an oxidation-reduction reaction, and its balanced equation is:

3. Procedure:

a) Place potassium permanganate (KMnO₄, oxidizing agent) in the burette. Place 10 ml of oxalic acid ($H_2C_2O_4$, N1=0.1N) and 20 ml of sulfuric acid H_2SO_4 (10%) in the Erlenmeyer flask. Heat the mixture to around 60 °C as the reaction is slow, and heat catalyzes the reaction (the color disappears rapidly).

b) Allow a few drops of $KMnO_4$ to flow, shake, and wait until they are decolorized. Continue adding a few drops until an excess drop produces a persistent pale pink color (does not disappear).

4- Manganometric titration of FeSO4:

Procedure:

a) Acidify (add an acid) 10 ml of FeSO4 with 20 ml of H_2SO_4 solution.

b) Proceed to the titration, which, unlike the titrations of oxalic acid, should be done cold.

c) Add the KMnO₄ solution (concentration determined in 3) until a pale pink color is obtained due to the addition of a single excess drop of KMnO₄. Repeat the experiment twice.