Final Exam

Data Mining \& Information Retrieval

Exercice 1 (5 pts) :

The similarity of two attributes with nominal values is evaluated using a generalization of binary variables. We propose to study two characteristics of plants: Leaf Color (yellow, green, red) and Leaf Size (small, large). Let's consider the data of plants as follows:

	Leaf Color	Leaf Size
\mathbf{A}	red	small
\mathbf{B}	yellow	large
\mathbf{C}	green	small
\mathbf{D}	yellow	large

Convert the plant data into binary values and calculate the distances $d(A, B), d(B, C), d(A, C)$ and $d(B, D)$ using Jaccard index. Comment these distances.

Exercice 2 (7 pts)

Given the dataset D in the following table,
1- Consider the following measurement which calculates the distance between two points a and b in D :

$$
d(a, b)=\max _{i}\left|x_{i}-y_{i}\right|
$$

Is this distance a measurement of similarity or dissimilarity?
2- Using the complete link as a measure of distance between 2 clusters, perform a bottom-up hierarchical clustering on D and plot the corresponding dendrogram.

Points	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$
A	1	1
B	1.5	0.5
C	0.8	1.2
D	-1	-0.8
E	-0.2	0.5
F	0.2	-1

Exercice 3 (8 pts)

Consider the following data corresponding to 7 observations of three variables X, Y and Z . The target class is the last column.

Apply the naive Bayesian classifier algorithm to this binary classification problem for predicting each of the following 3 new observations:

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Class
$\mathbf{x 8}$	A	α	2	$?$
$\mathbf{x 9}$	C	β	1	$?$
$\mathbf{x 1 0}$	B	β	1	$?$

N.B. Do not forget to use Laplacian Correction if necessary.

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Class
$\mathbf{x} 1$	A	α	1	C 1
$\mathbf{x} 2$	A	β	1	C 1
$\mathbf{x 3}$	A	α	1	C 1
$\mathbf{x 4}$	B	α	3	C 1
$\mathbf{x 5}$	B	α	1	C 2
$\mathbf{x 6}$	C	β	2	C 2
$\mathbf{x} 7$	C	β	2	C 2

Solution of Final Exam

Data Mining \& Information Retrieval

Exercice 1 (5 pts)

	LeafColorYellow	LeafColorGreen	LeafColorRed	LeafSizeSmall	LeafSizeLarge
A	0	0	1	1	0
B	1	0	0	0	1
C	0	1	0	1	0
D	1	0	0	0	1

	B				C				C				D		
A		1	0	A		1	0	B		1	0	B		1	0
	1	0	2		1	1	1		1	0	2		1	2	0
	0	2	1		0	1	2		0	2	1		0	0	3

$\mathrm{d}(\mathrm{A}, \mathrm{B})=(2+2) /(0+2+2)=1 \quad \mathrm{~d}(\mathrm{~A}, \mathrm{C})=(1+1) /(1+1+1)=2 / 3 \quad \mathrm{~d}(\mathrm{~B}, \mathrm{C})=(2+2) /(0+2+2)=1 \quad \mathrm{~d}(\mathrm{~B}, \mathrm{D})=(0+0) /(2+0+0)=0$
No similarity: A and B, B and C (distance=1)
Partial similarity; A and C (in Leaf Size property!) (distance=0.67)
Complete similarity: B and D (distance=0)
Jaccard Index is a measure of dissimilarity.

Exercice 2 (7 pts)

1- Consider the following measurement which calculates the distance between two points a and b in D :

$$
\begin{aligned}
& d(a, b)=\max _{i}\left|x_{i}-y_{i}\right| \\
& d(A, B)=\max _{1,2}\left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)=\max (|1-1|,|1.5-0.5|)=1
\end{aligned}
$$ Since $d(a, b)$ take the maximum of absolute values, it may be a measurement of dissimilarity.

2- Bottom-up hierarchical clustering of D and corresponding dendrogram.

Points	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$
A	1	1
B	1.5	0.5
C	0.8	1.2
D	-1	-0.8
E	-0.2	0.5
F	0.2	-1

	A	B	C	D	E	F
A	0	1	0.4	$\mathbf{0 . 2}$	0.7	1.2
B		0	1	1	1	1.2
C			0	0.4	0.7	1.2
D				0	0.7	1.2
E					0	1.2
F						0

	AD	\mathbf{B}	\mathbf{C}	\mathbf{E}	\mathbf{F}
$\mathbf{A D}$	0	1	$\mathbf{0 . 4}$	0.7	1.2
\mathbf{B}		0	1	1	1.2
\mathbf{C}			0	0.7	1.2
\mathbf{E}				0	1.2
\mathbf{F}					0

	ADC	B	E	F
ADC	0	1	$\mathbf{0 . 7}$	1.2
B		0	1	1.2
E			0	1.2
F				0

	ADCE	B	F
ADCE	0	$\mathbf{1}$	1.2
B		0	1.2
F			0

	ADCEB	F
ADCEB	0	1.2
F		0

Exercice 3 (8 pts)

Consider the following data corresponding to 7 observations of three variables X, Y and Z . The target class is the last column.

Apply the naive Bayesian classifier algorithm to this binary classification problem for predicting each of the following 3 new observations:

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Class
$\mathbf{x 8}$	A	α	2	$?$
$\mathbf{x 9}$	C	β	1	$?$
$\mathbf{x 1 0}$	B	β	1	$?$

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Class
$\mathbf{x 1}$	A	α	1	C 1
$\mathbf{x} 2$	A	β	1	C 1
$\mathbf{x 3}$	A	α	1	C 1
$\mathbf{x 4}$	B	α	3	C 1
$\mathbf{x 5}$	B	α	1	C 2
$\mathbf{x 6}$	C	β	2	C 2
$\mathbf{x} 7$	C	β	2	C 2

$\mathrm{P}\left(\mathrm{C}_{1}\right):=4 / 7=0.571 \quad \mathrm{P}\left(\mathrm{C}_{2}\right):=3 / 7=0.428$

1) Classification of $\mathbf{x 8}(\mathbf{X}=\mathrm{A}, Y=\alpha, \mathbf{Z}=2)$

Compute $\mathrm{P}\left(\mathrm{x} 8 \mid \mathrm{C}_{\mathrm{i}}\right)$ for each class
$\mathrm{P}(\mathrm{X}=\mathrm{A} \mid \mathrm{C} 1)=3 / 4=0.75, \mathrm{P}(\mathrm{X}=\mathrm{A} \mid \mathrm{C} 2)=0 / 3=0$
Laplacian correction, $\mathrm{P}(\mathrm{X}=\mathrm{A} \mid \mathrm{C} 1)=4 / 5=0.8, \mathrm{P}(\mathrm{X}=\mathrm{A} \mid \mathrm{C} 2)=1 / 4=0.25$
$\mathrm{P}(\mathrm{Y}=\alpha \mid \mathrm{C} 1)=3 / 4=0.75, \mathrm{P}(\mathrm{Y}=\alpha \mid \mathrm{C} 2)=1 / 3=0.333$
$\mathrm{P}(\mathrm{Z}=2 \mid \mathrm{C} 1)=0 / 4=0, \mathrm{P}(\mathrm{Z}=2 \mid \mathrm{C} 2)=2 / 3=0.667$
Laplacian correction, $\quad \mathrm{P}(\mathrm{Z}=2 \mid \mathrm{C} 1)=1 / 5=0.2, \mathrm{P}(\mathrm{Z}=2 \mid \mathrm{C} 2)=3 / 4=0.75$
$\mathbf{P}\left(\mathbf{x} 8 \mid \mathbf{C}_{\mathbf{i}}\right): \mathrm{P}(\mathrm{x} 8 \mid \mathrm{C} 1)=0.8 \times 0.75 \times 0.2=0.12$

$$
\mathrm{P}(\mathrm{x} 8 \mid \mathrm{C} 2)=0.25 \times 0.333 \times 0.75=0.062
$$

$\mathbf{P}\left(\mathbf{x} 8 \mid \mathbf{C}_{\mathbf{i}}\right) * \mathbf{P}\left(\mathbf{C}_{\mathbf{i}}\right): \mathrm{P}(\mathrm{x} 8 \mid \mathrm{C} 1) \times \mathrm{P}(\mathrm{C} 1)=0.12 \times 0.571=0.0685$

$$
\mathrm{P}(\mathrm{x} 8 \mid \mathrm{C} 2) \times \mathrm{P}(\mathrm{C} 2)=0.062 \times 0.428=0.0265
$$

Therefore, $x 8$ belongs to class C 1
2) Classification of $\mathbf{x} 9(\mathbf{X}=\mathbf{C}, \mathbf{Y}=\boldsymbol{\beta}, \mathbf{Z}=1)$

Compute $\mathrm{P}\left(\mathrm{x} 9 \mid \mathrm{C}_{\mathrm{i}}\right)$ for each class
$\mathrm{P}(\mathrm{X}=\mathrm{C} \mid \mathrm{C} 1)=0 / 4=0, \mathrm{P}(\mathrm{X}=\mathrm{C} \mid \mathrm{C} 2)=2 / 3=0.666$
Laplacian correction, $\mathrm{P}(\mathrm{X}=\mathrm{C} \mid \mathrm{C} 1)=1 / 5=0.2, \mathrm{P}(\mathrm{X}=\mathrm{C} \mid \mathrm{C} 2)=3 / 4=0.75$
$P(Y=\beta \mid C 1)=1 / 4=0.25, P(Y=\beta \mid C 2)=2 / 3=0.666$
$\mathrm{P}(\mathrm{Z}=1 \mid \mathrm{C} 1)=3 / 4=0.75, \mathrm{P}(\mathrm{Z}=1 \mid \mathrm{C} 2)=1 / 3=0.333$
$\mathbf{P}\left(\mathbf{x} 9 \mid \mathbf{C}_{\mathbf{i}}\right): \mathbf{P}(\mathrm{x} 9 \mid \mathrm{C} 1)=0.2 \times 0.25 \times 0.75=0.0375$

$$
\mathrm{P}(\mathrm{x} 9 \mid \mathrm{C} 2)=0.75 \times 0.666 \times 0.333=0.1663
$$

$\mathbf{P}\left(\mathbf{x} 9 \mid \mathbf{C}_{\mathbf{i}}\right) * \mathbf{P}\left(\mathbf{C}_{\mathbf{i}}\right): \mathbf{P}(\mathrm{x} 9 \mid \mathrm{C} 1) \times \mathrm{P}(\mathrm{C} 1)=0.0375 \times 0.571=0.0214$

$$
\mathrm{P}(\mathrm{x} 9 \mid \mathrm{C} 2) \times \mathrm{P}(\mathrm{C} 2)=0.1663 \times 0.428=0.0711
$$

Therefore, $\mathbf{x} 9$ belongs to class $\mathbf{C} 2$
3) Classification of $\times 10(X=B, Y=\beta, Z=1)$

Compute $\mathrm{P}\left(\mathrm{x} 10 \mid \mathrm{C}_{\mathrm{i}}\right)$ for each class
$\mathrm{P}(\mathrm{X}=\mathrm{B} \mid \mathrm{C} 1)=1 / 4=0.25, \mathrm{P}(\mathrm{X}=\mathrm{B} \mid \mathrm{C} 2)=1 / 3=0.333$
$P(Y=\beta \mid \mathrm{C} 1)=1 / 4=0.25, \mathrm{P}(\mathrm{Y}=\beta \mid \mathrm{C} 2)=2 / 3=0.666$
$\mathrm{P}(\mathrm{Z}=1 \mid \mathrm{C} 1)=3 / 4=0.75, \mathrm{P}(\mathrm{Z}=1 \mid \mathrm{C} 2)=1 / 3=0.333$
$\mathbf{P}\left(\mathbf{x 1 0} \mid \mathbf{C}_{\mathbf{i}}\right): \mathrm{P}(\mathrm{x} 10 \mid \mathrm{C} 1)=0.25 \times 0.25 \times 0.75=0.0468$
$P(x 10 \mid C 2)=0.333 \times 0.666 \times 0.333=0.0738$
$\mathbf{P}\left(\mathbf{x 1 0} \mid \mathbf{C}_{\mathbf{i}}\right) * \mathbf{P}\left(\mathbf{C}_{\mathbf{i}}\right): \mathrm{P}(\times 10 \mid \mathrm{C} 1) \times \mathrm{P}(\mathrm{C} 1)=0.0468 \times 0.571=0.0267$
$\mathrm{P}(\mathrm{x} 10 \mid \mathrm{C} 2) \times \mathrm{P}(\mathrm{C} 2)=0.0738 \times 0.428=0.0315$
Therefore, $x 10$ belongs to class $\mathbf{C} 2$

