Final Exam

Data Mining & Information Retrieval

Exercice 1 (5 pts) :

The similarity of two attributes with nominal values is evaluated using a generalization of binary variables. We propose to study two characteristics of plants: **Leaf Color** (*yellow, green, red*) and **Leaf Size** (*small, large*). Let's consider the data of plants as follows:

	Leaf Color	Leaf Size
Α	red	small
B	yellow	large
С	green	small
D	yellow	large

Convert the plant data into binary values and calculate the distances d(A,B), d(B,C), d(A,C) and d(B,D) using Jaccard index. Comment these distances.

Exercice 2 (7 pts)

Given the dataset D in the following table,

1- Consider the following measurement which calculates the distance between two points *a* and *b* in *D* :

 $d(a, b) = max_i |x_i - y_i|$

Is this distance a measurement of similarity or dissimilarity?

2- Using the complete link as a measure of distance between 2 clusters, perform a bottom-up hierarchical clustering on *D* and plot the corresponding dendrogram.

Points	Xi	y i
Α	1	1
В	1.5	0.5
С	0.8	1.2
D	-1	-0.8
E	-0.2	0.5
F	0.2	-1

Exercice 3 (8 pts)

Consider the following data corresponding to 7 observations of three variables X, Y and Z. The target class is the last column.

Apply the naive Bayesian classifier algorithm to this binary classification problem for predicting each of the following 3 new observations:

	Χ	Y	Ζ	Class
x8	А	α	2	?
x9	С	β	1	?
x10	В	β	1	?

N.B. Do not forget to use Laplacian Correction if necessary.

	Χ	Y	Ζ	Class
x1	Α	α	1	C1
x2	Α	β	1	C1
x3	Α	α	1	C1
x4	В	α	3	C1
x5	В	α	1	C2
x6	C	β	2	C2
x7	С	β	2	C2

Solution of Final Exam

Data Mining & Information Retrieval

Exercice 1 (5 pts)

	LeafColorYellow	LeafColorGreen	LeafColorRed	LeafSizeSmall	LeafSizeLarge
А	0	0	1	1	0
В	1	0	0	0	1
С	0	1	0	1	0
D	1	0	0	0	1

		В				С				С				D	
		1	0			1	0			1	0			1	0
Α	1	0	2	Α	1	1	1	В	1	0	2	В	1	2	0
	0	2	1		0	1	2		0	2	1		0	0	3

 $d(A,B) = (2+2)/(0+2+2) = 1 \quad d(A,C) = (1+1)/(1+1+1) = 2/3 \qquad d(B,C) = (2+2)/(0+2+2) = 1 \quad d(B,D) = (0+0)/(2+0+0) = 0$ No similarity: A and B, B and C (distance=1)

Partial similarity; A and C (in Leaf Size property!) (distance=0.67)

Complete similarity: B and D (distance=0)

Jaccard Index is a measure of dissimilarity.

Exercice 2 (7 pts)

1- Consider the following measurement which calculates the distance between two points *a* and *b* in *D* :

$$d(a, b) = max_i |x_i - y_i|$$

$$d(A,B)=max_{1,2} (|x_1 - y_1|, |x_2 - y_2|)=max((|1 - 1|, |1.5 - 0.5|)=1)$$

Since d(a,b) take the maximum of absolute values, it may be a measurement of dissimilarity.

2- Bottom-up hierarchical clustering of *D* and corresponding dendrogram.

	Α	В	С	D	Ε	F
Α	0	1	0.4	0.2	0.7	1.2
В		0	1	1	1	1.2
С			0	0.4	0.7	1.2
D				0	0.7	1.2
Е					0	1.2
F						0

	ADC	В	Ε	F
ADC	0	1	0.7	1.2
В		0	1	1.2
E			0	1.2
F				0

	ADCE	В	F
ADCE	0	1	1.2
В		0	1.2
F			0

Points	Xi	y i
Α	1	1
В	1.5	0.5
С	0.8	1.2
D	-1	-0.8
E	-0.2	0.5
F	0.2	-1

	AD	В	С	Е	F
AD	0	1	0.4	0.7	1.2
В		0	1	1	1.2
С			0	0.7	1.2
Е				0	1.2
F					0

	ADCEB	F
ADCEB	0	1.2
F		0

Exercice 3 (8 pts)

Consider the following data corresponding to 7 observations of three variables X, Y and Z. The target class is the last column.

Apply the naive Bayesian classifier algorithm to this binary classification problem for predicting each of the following 3 new observations:

	Χ	Y	Z	Class
x8	А	α	2	?
x9	С	β	1	?
x10	В	β	1	?

	Χ	Y	Ζ	Class
x1	А	α	1	C1
x2	А	β	1	C1
x3	А	α	1	C1
x4	В	α	3	C1
x5	В	α	1	C2
x6	С	β	2	C2
x7	С	β	2	C2

P(C₁): = 4/7 = 0.571 P(C₂): = 3/7 = 0.4281) Classification of x8 (X=A, Y= α , Z=2)

Compute $P(x8|C_i)$ for each class P(X = A | C1) = 3/4 = 0.75, P(X = A | C2) = 0/3 = 0Laplacian correction, P(X = A | C1) = 4/5 = 0.8, P(X = A | C2) = 1/4 = 0.25 $P(Y = \alpha | C1) = 3/4 = 0.75, P(Y = \alpha | C2) = 1/3 = 0.333$ P(Z = 2 | C1) = 0/4 = 0, P(Z = 2 | C2) = 2/3 = 0.667Laplacian correction, P(Z = 2 | C1) = 1/5 = 0.2, P(Z = 2 | C2) = 3/4 = 0.75 $P(x8|C_i) : P(x8|C1) = 0.8 \times 0.75 \times 0.2 = 0.12$ $P(x8|C2) = 0.25 \times 0.333 \times 0.75 = 0.062$ $P(x8|C_i)*P(C_i) : P(x8|C1) \times P(C1) = 0.12 \times 0.571 = 0.0685$ $P(x8|C2) \times P(C2) = 0.062 \times 0.428 = 0.0265$ Therefore, x8 belongs to class C1 2) Classification of x9 (X=C, Y= β , Z=1) Compute $P(x9|C_i)$ for each class P(X = C | C1) = 0/4 = 0, P(X = C | C2) = 2/3 = 0.666Laplacian correction, P(X = C | C1) = 1/5 = 0.2, P(X = C | C2) = 3/4 = 0.75 $P(Y = \beta | C1) = 1/4 = 0.25, P(Y = \beta | C2) = 2/3 = 0.666$

P(Z = 1 | C1) = 3/4 = 0.75, P(Z = 1 | C2) = 1/3 = 0.333

 $\begin{aligned} \mathbf{P}(\mathbf{x9}|\mathbf{C}_i) &: \mathbf{P}(\mathbf{x9}|\mathbf{C}1) = 0.2 \text{ x } 0.25 \text{ x } 0.75 = 0.0375 \\ & \mathbf{P}(\mathbf{x9}|\mathbf{C}2) = 0.75 \text{ x } 0.666 \text{ x } 0.333 = 0.1663 \end{aligned}$ $\begin{aligned} \mathbf{P}(\mathbf{x9}|\mathbf{C}_i) &: \mathbf{P}(\mathbf{x9}|\mathbf{C}1) \text{ x } \mathbf{P}(\mathbf{C}1) = 0.0375 \text{ x } 0.571 = 0.0214 \\ & \mathbf{P}(\mathbf{x9}|\mathbf{C}2) \text{ x } \mathbf{P}(\mathbf{C}2) = 0.1663 \text{ x } 0.428 = 0.0711 \end{aligned}$ $\begin{aligned} \mathbf{Therefore, \ x9 \ belongs \ to \ class \ C2} \end{aligned}$ $\begin{aligned} \mathbf{O}_i = \mathbf{O}_i + \mathbf{O}_i$