Université Mohamed Boudiaf- M'Sila

Faculté des Sciences

Département de chimie

1^{ère} année Master Chimie de l'environnement LMD- S01 2022/2023

TP Synthèse organique Préparation du cinnamone

TP N°02: Dibenzalacétone par la condensation aldolique

Objectif:

La 1,5-diphénylpenta-1,4-diène-3-one est le nom systématique du cinnamone. Elle est préparée par une double condensation de la propanone et de l'aldéhyde benzoïque, suivie d'une crotonisation.

Equation réactionnelle :

Sécurité et données :

• **Benzaldéhyde :** $M = 106,1 \text{ g.mol}^{-1}$ $T_{eb} = 178 \text{ }^{\circ}\text{C}$

Peu soluble dans l'eau, soluble dans l'éthanol.

Vapeurs nocives.

• **Acétone :** $M = 58.1 \text{ g.mol}^{-1}$ $T_{eb} = 56 \text{ }^{\circ}\text{C}$

Très soluble dans l'eau

Liquide très inflammable, vapeurs irritantes.

• **Éthanol**: $T_{eb} = 78 \, ^{\circ}\text{C}$

Liquide très inflammable, vapeurs irritantes.

• **Hydroxyde de sodium :** $M = 40.0 \text{ g.mol}^{-1}$

Corrosif, hygroscopique

Dissolution dans l'eau exothermique. La solution est corrosive.

• Acétate d'éthyle : $T_{eb} = 77 \, ^{\circ}\text{C}$ Peu soluble dans l'eau.

Liquide très inflammable, vapeurs irritantes.

• **Dibenzylidèneacétone :** $M = 234,3 \text{ g.mol}^{-1}$

Peu soluble dans l'eau, relativement soluble dans l'éthanol, soluble dans l'acétate d'éthyle à chaud. Irritant par contact avec la peau

Protocole expérimental :

1. Réaction de condensation

- Équiper un réacteur de 100 mL d'une agitation magnétique, d'un réfrigérant à reflux, d'une ampoule de coulée et d'un thermomètre.
- Introduire dans le réacteur 2,5 g d'hydroxyde de sodium, et 25 mL d'eau.

Agiter pour dissoudre complètement l'hydroxyde de sodium.

Refroidir jusqu'à la température ambiante pour introduire ensuite 20 mL d'éthanol à 95 %.

• Préparer un mélange de 2,5 mL de benzaldéhyde et 0,9 g d'acétone et l'introduire dans l'ampoule de coulée.

Verser la moitié de ce mélange, tout en agitant et en maintenant la température entre 20 et 25 °C (cette addition doit durer environ 10 minutes).

• Attendre 15 minutes et ajouter le reste du mélange. Laisser réagir 30 minutes après la fin de l'addition.

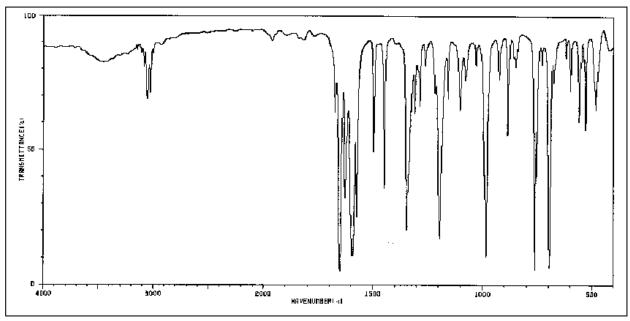
2. Séparation du produit brut préparé

- Filtrer sur büchner pour séparer le produit brut obtenu.
- Laver le solide à l'eau glacée. L'essorer et le peser.
- Mettre environ 5 g de produit brut à sécher à l'étuve à 80 °C.

3. Purification

- Recristalliser une masse de 5 g de produit brut dans de l'acétate d'éthyle.
- Sécher à l'étuve, à 80°C, le produit purifié. Le peser.

4. Contrôles de pureté


- Mesurer la température de fusion du produit purifié.
- Réaliser une C.C.M. sur gel de silice :
 - effectuer quatre dépôts sur la plaque :
 - dibenzylidèneacétone de référence en solution dans l'éther (solution fournie)
 - benzaldéhyde (1 goutte en solution dans 3 à 4 mL d'éther)
 - dibenzylidèneacétone brute (quelques cristaux en solution dans 3 à 4 mL d'éther)
 - dibenzylidèneacétone purifiée (quelques cristaux en solution dans 3 à 4 mL d'éther)
 - éluer avec un mélange cyclohexane / acétate d'éthyle (7/3)
 - révéler sous la lampe UV(254 nm)

Ouestions

- 1. Donner le mécanisme de réaction
- 2. Calcul du rendement de la préparation
- 3. Préciser le rôle de l'éthanol dans la préparation.
- 4. Commenter le chromatogramme. En déduire la pureté du produit préparé.

5. Spectroscopies

Identifier, sur le spectre I.R, les bandes d'absorption caractéristiques des vibrations de valence des groupements présents dans la molécule.

