
Chapter 1:
Sub -programs: Functions and Procedures

Algorithms and data structure 2

Presented byr : Dr. Benazi Makhlouf
Academic year : 2023/2024

Chapter 01 Content:

1. Introduction

2. Definitions

3. Local and global variables

4. Parameter Passing

5. Recursivity

Introduction

A program is a set of sequential instructions to solve a

specific problem. In order to find the solution method

(algorithm), the problem must be divided into different sub-

problems whose solution is less complicated. Partial

problems can be solved using subroutines.

Subprograms:

• A subroutine is a set of independent instructions that have a name and are

called for execution. The caller is either the main program or another

subroutine.

• When the program, during its execution, reaches the instruction that calls

the subroutine, the execution context becomes the contents of the

subroutine. Once the subroutine has finished executing, the program

returns to the instruction immediately following the invocation.

• Subroutines can be called procedures, functions, methods, routines, or

macros.

Procedure
A procedure is a subroutine that does not return any values in its name, but it can

return results via arguments.

The procedure name can be used as a standalone statement. For example:

For example:

• Displaying numbers on the screen below a certain limit

• Showing table values on the screen

• Solving a quadratic equation

algorithm C

SomeProc SomeProc();

OtherProc(x) OtherProc (x);

Function

A function is a subroutine that necessarily returns a result in its name because its

name is considered a variable that carries a certain value. Therefore, the function

call can be used as a variable in assignment operations and other expressions.

For example:

• - Calculating the square of a number

• - Calculating the area of a rectangle

• - Solving a first-order equation

• - Finding the sum of an array

• - Checking if a number is prime or not

Algorithm VS

Y←SomeFunction(X)*5 Y= SomeFunction(X)*5;

Advantages of using subroutines

• Readability: Utilizing subroutines organizes and simplifies the

program, enhancing comprehension of the code.

• Speed in programming: Avoiding the repetition of the same

sequence of instructions within the program improves efficiency.

• Reduced program size: Subroutines contribute to a more

compact program.

• Facilitates maintenance: Subroutines make it easier to maintain

and update the program.

• Reuse: They can be stored in libraries for convenient reuse in

other programs.

Declarations

Procedure

• Algorithm

procedure proc_name (parameter list)

local variables

Begin

instructions

End .

• In C

void proc_name (parameter list){

local variables;

instructions ;

}

− proc_name : valid identifiers.

− List of parameters (optional): called “formal parameters” a set of variables by which data

is transmitted and results are retrieved,

• separated by a comma «,»

• are between two parentheses

• are of the form paramname : type in algorithm and type paramname in C

such as: (a:integer , b:real) in algorithm and (int a, float b) in C

• Parentheses () are required even if they contain no arguments in C such as:

proc() .

− Local declarations (optional): A list of local variables of the form:

• var varLoc : type

− Instructions: a set of instructions of any type, which will be executed when the subroutine

is called.

− all variables declared in the “parameter list” or local declaration, which are called local

variables, and variables declared in the main program, called global variables

Declarations

Function

• Algorithm

function func_name (parameter list): type

local variables

Begin

instructions

End .

• In C

type function_name (parameter list){

local variables;

instructions ;

}

− Result_Type : When the program is a function, the type of value that the

function will return to the program that called it must be specified, and a value

must be assigned to the function name. This is usually the last statement in the

function.

• In algorithm it is of the form function_name ← expression where the name

of the function acts as a special variable which contains the return value by

the function.

• In C, for indicates that the function returns nothing, ie a procedure either

leaves the Type empty or uses the word void depending on the version.

• the word return is used to assign a value to the function name.

• the return statement causes the subroutine to exit and resume the

program that called it at the statement immediately following the

invocation. It can return a value to the program that called the

subroutine if it was a function.

• Format : return [<expression>] ;

Example :

• return 5*x;

• return ;

Important notes:

1. To determine the arguments, consider what input is provided to the

subroutine and what it returns as a result.

2. The list of parameters in the subroutine's definition must match in

number type and order with those used in its invocation.

3. The first line of a function or procedure declaration, including function

type, function name, type, order, and number of arguments (excluding

their names), is called a header or prototype.

4. Arguments are not grouped if they are of the same type, as in (x, y:

integer). Instead, use (x: integer, y: integer) or (int x, int y).

5. Any return type other than void indicates that the program is a function,

not a procedure.

6. `void main()` or simply `main()` is a procedure, while `int main()` is a

function and should include a “return statement”.

7. `scanf()` and `printf()` are two functions declared in the stdio library.

Ordering and placement

• In the algorithm, function declarations are placed after the

declaration of variables and before the begin of the main program.

• In a C program, functions are declared before the `main()` function.

• The order of subroutines is crucial because each function must be

defined before it can be used.

• For example, if function `f1()` calls function `f2()`, then function

`f2()` must be defined before function `f1()`.

The invocation

• To call and execute a procedure, we use its name as a separate instruction

and assign values and/or variables to the arguments in parentheses,

referred to as effective parameters.

• Parentheses () can be omitted in the absence of any arguments, but in C,

they are required.

• Similarly, when calling a function, its name is treated as a variable

carrying a certain value. Therefore, the function call can be used as a

variable in assignment operations and other expressions.

• It's important to note that the actual parameters must correspond in

number, type, and order with the formal parameters.

Examples
Algorithm Test

var z: real

function sumNbrs (x:integer , y:integer): integer

Begin

sumNbrs ← x+y

END function

procedure displaysNbrs (n:integer)

var i:integer

Begin

for i←1 to n do

Write(i)

endfor

End of procedure

Begin

displaysNbrs (5)

z←sumNbrs (5, 3)

Write("the sum is ", z)

END .

Examples
#include < stdio.h >

float z;

int sumNbrs (int x, int y)

{

return x+y ;

}

void displayNbrs (int n)

{

int i ;

for (i=1; i<=n; i++)

printf("%d\ t",i);

}

int main() {

displayNbrs (5);

Z = sumNbrs (5, 3);

printf("the sum is %d", z);

return 0 ;

}

Local variables and global variables

1. Global Variables:

• - Declared outside any subprogram.

• - Usable anywhere in the program.

• - No need to pass as a parameter in subroutines.

• - Created during program loading.

• - Deleted at the end of program execution.

2. Local Variables:

• - Specific to the subroutine or block where defined.

• - Created upon function call.

• - Deleted when the function execution concludes.

• Recommendations:

• It is recommended to use local variables and parameters instead of global variables to

avoid errors and ensure function independence."

Example Algorithm
Algorithm glob_loc

Var glob , b: integer

Procedure tst

Var b, loc : integer

Begin

glob←11

b←22

loc←33

Write(“in tst : glob =”, glob , “b=”, b, “ loc =”, loc)

End

Begin

glob←1

b←2

Write(“before tst : glob =”, glob , “b=”, b)

tst

Write(“after tst : glob =”, glob , “b=”, b)

end

Example C
#include < stdio.h >

int glob , b ;

tst (){

int b, loc ;

glob =11;

b=22;

loc =33;

printf(“in tst : glob =%db=%d loc =%d”, glob , b, loc);

}

int main() {

glob =1;

b=2;

printf(“before tst : glob =%db=%d”, glob , b);

tst();

printf(“after tst : glob =%db=%d”, glob , b);

return 0 ;

}

The screen:

Before tst : glob =1 b=2

In tst : glob =11 b=22 loc =33

After tst : glob =11 b=2

Explanation :

avant d'appeler tst Durant l’appel de tst après avoir appelé tst

glob b

glob b glob b

1 2 2 11 2 11

4 Passing parameters
Parameters: are Variables facilitating information exchange between programs.

Two Ways to Pass Parameters:

1. Passage by Value:

• Value of the original variable is copied into the (formal) parameter.

• Copy is used as a local variable; original variable remains unmodified.

• Can use a constant value, expression, or variable.

• Used exclusively for entering information.

2. Passage by Reference, Address, or Variable:

• Not only the value is passed, but also the place of the original variable

(address).

• Formal and effective variables become a single entity.

• Any change to the parameter in the subroutine affects the original variable.

• Only variables (not constants or expressions) can be passed.

• Primarily used to receive results.

• Also used for entering information, especially for large variables like tables

and matrices, to avoid copying.

Passing by reference, address or
variable:

• The word ‘var’ is used before declaring the argument name to indicate that the pass is

a pass by variable or pass by reference.

• To pass arguments by address in C, we use pointers, which will be covered in the third

chapter of this course.

• In the declaration of the formal parameter, the name is preceded by '*' to indicate a

pointer, and during the use within the function. However, when calling the function, the

effective variable is preceded by '&'.

• In C++, the symbol '&' is used for references during the declaration only.

• Example:

Algorithm C C++

Declaration f(var x:integer) int f(int *x) int f(int &x)

Use x5 *x=5; x=5;

Call f(a) f(&a); f(a);

Examples
Algorithm pass_value

var a, c: real

beginning

c←0

a←3

write (“before square c=”, c)

square(a,c) // we can use square(3,c)

write (“ after square c=”, c)

END

Procedure square (x: real, y: real)

Begin

y← x*x

END

the screen

before square c=0

after square c=0

Examples
Algorithm pass_variable _

var a, c: real

begin

c←0

a←3

write (“before square c=”, c)

square(a,c) // we can use square(3,c)

write (“ after square c=”, c)

END

Procedure square (x: real, var y: real)

Begin

y← x*x

END

the screen

before square c=0

after square c=9

Examples
#include < stdio.h >

void square (float x, float y){

y= x*x;

}

int main() {

float a, c;

c=0;

a=3;

printf (“before square c=%f ”, c);

square(a,c); // we can use square(a,5)

printf (“ after square c=%f”, c);

return 0 ;

}

the screen

before square c=0

after square c=0

Examples
#include < stdio.h >

void square (float x, float *y){

*y= x*x;

}

int main() {

float a, c;

c=0;

a=3;

printf (“before square c=%f ”, c);

square(a, &c); // we can use square(a,5)

printf (“ after square c=%f”, c);

return 0 ;

}

the screen

before square c=0

after square c=9

Converting a procedure into a function:
Any procedure that returns a single result can be converted to a function,

1. change the word Procedure to function

2. transform the “result parameter” into a local variable

3. define the type of the function to be the type of this parameter

4. At the end of the function, assign the value of this parameter to the function name.

Example Algorithm

Procedure abs(x:real, var y:real)

Begin

if x<0 then

y← -x

else

y←x

end if

END

//Call

abs(-5, z)

function abs(x: real): real

var y: real

Begin

if x<0 then

y← -x

else

y←x

end if

abs←y

END

//Call

z←abs (-5)

Example C
void abs(float x, float *y){

if (x<0)

*y = -x;

else

*y = x;

}

//call

abs(-5, &z);

float abs (float x){

float y;

if (x<0)

y = -x;

else

y = x;

return y ;

}

//call

z = abs(-5);

The variable y can be omitted

As we can omit else which comes after return .

float abs (float x){

if (x<0)

return -x;

return x;

}

End of part 1 of Chapter 01

5 Recursion

1. A recursive program is any program that calls itself.

2. the defined program is used to define itself.

3. A recursive program is one that does part of the work
and then calls itself to complete the rest.

• Recursion is a simple and elegant way to solve certain
problems of a recurring nature.

• Note: Any for or while loop can be transformed into a
recursive program .

Stop Condition
• Since the recursive program calls itself, it is necessary to provide a

condition to stop the recursion, which is the case where the program does
not call itself

• It is best to test the stopping condition first, and then, if the condition is
not met, to call the program back as the call leads to the stopping
condition.

• Example :

void displays (int i)

{

printf("% d",i);

display (i +1);

}

void displays (int i)

{

if (i<10) {

printf("% d",i);

display (i +1);

}

}

The general form of the recursive
program:

procedure Recursive

begin

if (stop condition) then

<breakpoint instructions>

else

<instructions>

Recursive call(parameters

changed)

<Instructions>

End if

END

void recursive (parameters) {

if (stop condition)

<breakpoint instructions>

else

{

<instructions>

Recursive call (parameters

changed)

<Instructions>

}

}

Example

Function fact (n: Integer): Integer

begin

if (n = 0) then

fact←1

else

fact←n*fact (n-1)

fsi ;

END .

int fact (int not){

if (n == 0) return 1;

return n* fact (n-1);

}

The execution stack:

• A memory location designated to hold parameters and local variables and

where the result is stored for each running subroutine.

• Programming in recursive mode is typically easier and more readable, but

it consumes a significant amount of memory. For example, when calculating

4!, we reserve a place in the stack to store the result, another for the

parameter n=4, and then additional places for the results of 3!, the parameter

n=3, and so on until 0! is calculated. Subsequently, the parameter n=0 is

deleted, and then the parameters and results are removed in the reverse order

of their creation.

Mutual recursion
• Mutual recursion is a situation where one program calls another program, and in

turn, the second program calls back the first program.

• Example #include < stdio.h >

float f2 (int n);

float f1 (int n) {

if (n <= 0) return 0 ;

return 1. / n + f2(n - 2);

}

float f2 (int n) {

if (n <= 0) return 0 ;

return - 1. / n + f1(n - 2);

}

void main () {

printf("%f \n ", 4 *f1(2 * 100 + 1)

* 4);

}

Mutual recursion

• Important note: In C language, when function f1 calls

function f2, and f2 is not yet defined, the header of function f2

(the first line without its body) must be added before defining

function f1. The actual definition of f2 can come later..

