
Algorithms and data structures 2 Chapter 1 Sub-programs

Chapter 1: subprograms : functions and procedures

1 Introduction
A program is a set of sequential instructions for solving a specific problem. In order to find the solution method
(algorithm), the problem must be divided into different sub-problems whose solution is less complicated.
Partial problems can be solved using sub-programs.
2 Definitions
2.1 Sub-programs :
Is a set of independent instructions that have a name and are called for execution. The caller is either the main
program or another subprogram. When the program, during its execution, reaches the instruction that calls the
procedure, the execution context becomes the contents of the subprogram, and once it has finished executing
the subprogram, it returns to executing the instruction immediately following the invocation.
The subprograms are also known as procedures, functions, methods and routines.
2.1.1 Procedure :
Procedure is a sub-program which returns no values in its name, but can return results via arguments. The
procedure name can be used as a complete instruction, for example:

algorithm C
SomeProc SomeProc();
OtherProc(x) OtherProc(x);

2.1.2 Function:
Function is a sub-program that necessarily returns a result in its name, as its name is considered to be a variable
that carries a certain value. Consequently, the function call can be used as a variable in assignment operations
and other expressions. For example:

Algorithm C
Y← SomeFunction(X)*5 Y= SomeFunction(X)*5 ;

Note: Any procedure that returns a single result as an argument can be converted into a function.
2.1.3 Advantages of using subroutines :

• Readability: the use of subroutines organizes and simplifies the program, making it easier to
understand the program code.

• Programming speed: don't repeat the same sequence of instructions several times within the program.
• Reduce program size
• Facilitates the maintenance process
• Reuse: it can be stored in libraries for reuse in other programs.

2.2 Declarations
Procedure: the declaration of a procedure takes the following form:

algorithm C
procedure proc_name (parameter list)
 local variables
begin
 instructions
end.

void proc_name(parameter list){
 local variables ;
 instructions ;
}

Function: the declaration is similar to the declaration of a procedure, except that the type of the result value
returned must be specified. It takes the following form:

Algorithm C

Algorithms and data structures 2 Chapter 1 Sub-programs

function func_name (parameter list) : type
 local variables
begin
 instructions
end.

type func_name (parameter list){
 local variables ;
 instructions ;
}

− proc_name, func_name: valid identifiers.
− Parameter list (optional): a set of variables through which data is transmitted and results are retrieved,

separated by a comma ",", and which are enclosed in parenthesis () and are of the form paramName: type,
such as (a:integer, b:real) and are called "formal parameters".
 In C, the list of arguments takes the form of type paramName (int a, float b) Parentheses () are required

even if they contain no arguments.
− Local declarations (optional) : A list of local variables of the form: var varLoc : type
− Instructions: a set of instructions of any type, which will be executed when the subprogram is called. Where

all variables declared in the parameter list or in the local declaration, which are called local variables, and
variables declared in the main program, called global variables, can be used.

− Result_Type : When the program is a function, the type of value that the function will return to the program
that called it must be specified, and a value must be assigned to the function name. This is generally the
function's last instruction, and is of the form
 func_name ← expression where the function name acts as a special variable that contains the return value
by the function.
 In the C language, you can dispense with the result type if the subprogram is a procedure, but some

versions use the word void, which means that the function returns nothing, and the word return is
used to assign a value to the function name.

• return: the return instruction exits the sub-program and returns it to the program that called it at the
instruction immediately following the invocation. It can return a value to the program that called the sub-
program if it was a function.

Format : return [<expression>] ;
Example:
return 5*x ; If a function
return ; if it's a procedure (i.e. a void function)

Important notes:
 To find the arguments, we ask what we're giving the subprogram as input and what it's returning as

output.
 The list of parameters in the definition part of the sub-program must be identical in number and type

to that used in the sub-program invocation.
 The first line of a function or procedure declaration, i.e. function type, function name, type, order and

number of arguments, except their names, is called the header or prototype.
 Arguments are not grouped together if they are of the same type, as in (x, y:integer), but we put

(x:integer, y:integer) (int x, int y)
 Any return type other than void indicates that the program is a function and not a procedure.
 void main() or simply main() is a procedure, while int main() is a function, so you need to use return.
 scanf() and printf() are two functions declared in the stdio library

2.3 Where to declare subprograms :
In the algorithm, it is located after the declaration of variables and before the begin of the main program.
In a C program, it is declared before the main() function.
Note: The order of subroutines is important, as each function must be defined before it can be used. In other
words, if function f1() calls function f2(), then function f2() must be defined before function f1().

Algorithms and data structures 2 Chapter 1 Sub-programs

2.4 The invocation
To call and execute a procedure, we use its name as a separate instruction and assign values and/or variables
to the arguments in brackets, called effective parameters. Parentheses can be omitted in the absence of any
arguments, but in C, they are mandatory.
The same goes for calling a function, where its name is considered a variable that carries a certain value, so
the function call can be used as a variable in assignment operations and other expressions.
The parameters must correspond in number, type and order with the formal parameters.

2.5 Examples
Examples of procedures
 If numbers below a certain limit are displayed on the screen, it takes the upper limit and returns nothing.

procedure displayNbs(n : integer)

 Display array values on screen takes an array and returns nothing
procedure displayTab(t :real array, n :integer)

 Solve a quadratic equation that takes three coefficients and returns two solutions
procedure eq2(a : integer, b : integer, c : integer, var x1 : integer, var x2 : integer)

Examples of functions
 Square a number Takes a number and returns its square

function square(x :real) : real

 The area of a rectangle takes two numbers and returns the area
function area(long :real, wide :real) : real

 Solving a first-order equation takes two coefficients and returns a solution
function eq1(a :real, b :real) : real

 The sum of an array takes an array and returns the sum
function sum(t :array of real numbers, size :integer) : real number

 whether the number is prime or not
function isPrime(x : integer) : Boolean

Example Algorithm
algorithm Test Program name
 var z : real Global variable
procedure displayNbs(n:entire) The name of the procedure that takes an

integer variable n as argument
 var i:integer local variable
Begin The begin of the procedure
 for i←1 to n do
 Write(i)
 endfor

Procedural instructions

End procedure end of procedure
function sumNbrs (x:integer, y:integer) :
integer

The name of the function that takes two
integer variables and returns an integer
result. x and y are not grouped even if
they are of the same type.

Begin The begin of the
 sumNbrs ←x+y The function name acts as a variable and

takes the result of the sum
End function end of function
Begin Begin of main program
 displayNbs(5) Call the displayNbrs procedure, where 5 is

assigned to n, and the procedure displays
the numbers from 1 to 5.

 z←sommeNbrs (5, 3) Calling sumNbrs, the program assigns the
value 5 to x and the value 3 to y, then
calculates the sum and assigns it to z

Algorithms and data structures 2 Chapter 1 Sub-programs

 Write("the sum is ", z) It displays the sum is 8
End. End of main program

Examples C
#include <stdio.h> tilizing the stdio library
 float z ; Global variable
void displayNbs (int n) The name of the procedure that takes an

integer variable n as an argument
{ The begin of the procedure
 int i ; local variable
 for (i=1; i<=n; i++)
 printf("%d\t",i);

Procedural instructions

} end of procedure
int sumNbrs (int x, int y) The name of the function that takes two

integer variables and returns an integer
result. x and y are not grouped even if
they are of the same type.

{ The begin of the
 return x+y ; The function name acts as a variable and

takes the result of the sum
} end of function
int main(){ Begin of main function
 displayNbs (5); Call the displayNbrs procedure, where 5

is assigned to n, and the procedure
displays the numbers from 1 to 5.

 Z=sumNbrs (5, 3); Calling sumNbrs, the program assigns the
value 5 to x and the value 3 to y, then
calculates the sum and assigns it to z

 printf("sum is %d", z); It displays the sum is 8
return 0 ;} End of main function

3 Local and global variables
A global variable is a variable declared outside the body of any sub-program, and therefore usable anywhere
in the program. Since a variable is global, it is not necessary to pass it as a parameter to use it in subprograms.
As for its lifetime, i.e. its existence in memory, it is created when the program is loaded into memory, and is
only deleted at the end of program execution.
A local variable is a variable that can only be used in the subprogram or block where it is defined. The variable
is created when the function is called and deleted when execution is complete.
 We recommend using local variables and parameters rather than global variables to avoid errors and

ensure function independence.
Example Algorithm:
algorithm glob_loc
 Var glob, b : integer global variables
Procedure tst
 Var b, loc : integer local variables
Begin
 glob←11 Global variables are accessible within the
 b←22 Local variable b hides global variable b
 loc←33
 Write("in tst: glob=", glob, "b=", b, "loc=", loc)
End
Begin
 glob←1
 b←2 Variable b is a global variable

Algorithms and data structures 2 Chapter 1 Sub-programs

 Write("before tst : glob=", glob, "b=", b) Local variables such as loc are not
accessible

 tst Procedure call
 Write("after tst : glob=", glob, "b=", b)
end

Example in C
#include <stdio.h>
int glob, b ; global variables
tst(){
 int b, loc ; local variables
 glob=11; Global variables are accessible within the
 b=22; Local variable b hides global variable b
 loc=33;
 printf("in tst: glob=%d b=%d loc=%d", glob, b, loc);
}
int main(){
 glob=1;
 b=2; Variable b is a global variable
 printf("before tst : glob=%d b=%d", glob, b);
//Local variables such as loc are not accessible
 tst(); Procedure call
 printf("after tst : glob=%d b=%d", glob, b);
 return 0 ;}

Screen :
before tst : glob=1 b=2
in tst: glob=11 b=22 loc=33
after tst : glob=11 b=2

Explanation:
before calling tst During tst call after calling tst
glob b

glob b glob b

Before the call, there are only two variables glob and b, but when the tst procedure is called, the processor
reserves two more variables, loc and b. The procedure can access global variables, but the local variable b
hides the global variable b, and when the procedure is terminated, the processor deletes all local variables.

4 Passing parameters
Arguments are the variables through which information can be exchanged between programs, i.e. the input of
data from the calling program to the subprogram and/or the output of results from the subprogram to the
calling program.

There are two ways of passing parameters or arguments
Passage by value :

1 2 2 11 2 11

Algorithms and data structures 2 Chapter 1 Sub-programs

In this mode, the value of the original variable is copied into the (formal) parameter, and this copy is used (a
local variable), leaving the original variable unchanged. In this mode, a constant value or expression can be
passed, and need not be a variable.
This mode is only used to enter information into the sub-program and is not used to receive results.
Passage by reference, address or variable :
Not only is the value passed, but the place of the original variable (address) is passed to the formal variable,
so they become a single variable, and any modification of the parameter in the sub called program results in
the modification of the original variable that was passed as a parameter.
In this mode, it's not possible to pass a constant value or an expression, but it must be a variable, so it's called
pass by variable.
This mode is used to enter information for the sub-program, especially large variables such as arrays and
matrices, to avoid copying. It is also used to receive results.
In algorithm the word “var” is used before declaring the name of the argument to indicate that the pass is a
pass by variable or pass by reference.
To pass arguments with address in C, we use the pointers we'll see in the third chapter of this course, where
the name of the formal parameter is preceded by * when declared and when used, but when the function is
called, this variable is preceded by “&”.
Declaration int f(int *x)
Usage *x=5;
Call f(&a);
In C++, pointer management is masked by using the “&” symbol in the declaration only, and this is called a
reference.
Declaration int f(int &x)
Usage x=5;
Call f(a);
Note: We don't use the word var (* in C) to enter data and display results.
Example Algorithm :

 by value passage by reference, address or variable
algorithm Passage_value
 var a, c: real
Procedure square (x: real, y: real)
Begin
 y← x*x
end
begin
 c←0
 a←3
 write("before square c=", c)
 square(a ,c)
// we can use square(3,c)
 write("after square c=", c)
end

algorithm Variable_passage
 var a, c: real
Procedure square (x: real, var y: real)
Begin
 y← x*x
end
begin
 c←0
 a←3
 write("before square c=", c)
 square(a,c)
 write("after square c=", c)
end

the screen
before square c=0
after square c=0

before square c=0
after square c=9

Example C:
passage by value passage by reference, address or variable

#include <stdio.h>
void square(float x, float y){
 y= x*x;

#include <stdio.h>
void square(float x, float *y) {
 *y=x*x;

Algorithms and data structures 2 Chapter 1 Sub-programs

}
int main(){
 float a, c;
 c=0;
 a=3;
 printf ("before square c=%f ", c);
 square(a ,c);
// we can use square(a,5)
 printf ("after square c=%f ", c);
return 0 ;}

}
int main(){
 float a, c;
 c←0;
 a←3;
 printf ("before square c=%f ", c);
 square(a,&c);
 // square(a,5) cannot be used
 printf ("after square c=%f", c);
return 0 ;}

the screen
before square c=0
after square c=0

before square c=0
after square c=9

Switching from a procedure to a function :
Any procedure that returns a single result can be converted into a function, where we change the word
Procedure into function and transform the argument that the procedure returns into a local variable and define
the type of the function as the type of this argument and before terminating the function, we assign the value
of the variable to the name of the function.
For example, the sub-program that calculates the absolute value of a real number :

In the form of a procedure In the form of a function
Procedure abs (x: real, var y: real)
Begin
 if x<0 then
 y← -x
 else
 y← x
 end if
end

function abs (x: real) : real
 var y: real
Begin
 if x<0 then
 y← -x
 else
 y← x
 end if
 abs←y
end

call
abs(-5, z) z←abs (-5)

In C
void abs (float x, float *y){
 if (x<0)
 *y= -x;
 else
 *y= x;
}

float abs (float x){
 float y;
 if (x<0)
 y= -x;
 else
 y= x;
 return y ;
}

The variable y can be omitted
You can omit else, which comes after
return.

float abs (float x){
 if (x<0)
 return -x;
 return x;
}

call
abs(-5, &z); z=abs (-5);

5 Recursivity
The recursion is a simple and elegant way of solving certain problems of a recurring nature.

Algorithms and data structures 2 Chapter 1 Sub-programs

A recursive program is any program that recalls itself. Whereas a defined program is used to
define itself. In concrete terms, a recursive program is one that does part of the work and then
recalls itself to complete the rest.

Note: Any for or while loop can be transformed into a recursive program .

Stop condition

Since the recursive program calls itself, it is necessary to provide a condition for stopping the
recursion, which is the case when the program doesn't call itself or it will never stop.
It is preferable to test the stop condition first, then, if the condition is not met, to call the
program back as the call leads to the stop condition.
Example:
Procedure display (i :integer)
begin
 write(i)
 display (i +1)
end.

void display (int i)
{
 printf("%d",i);
 display (i +1);
}

For example, we invoke display(1), so it displays 1, then it invokes display for i=i+1=2, so it
displays 2, then to infinity, so the algorithm must have a stop condition, by Example:
Procedure display (i :integer)
begin
 if (i<10) then
 write(i)
 display (i +1)
 endif
end.

void display (int i)
{
 if (i<10) {
 printf("%d",i);
 display (i +1);
 }
}

The general form of the recursive program :
procedure Recursive (parameters)
begin
 if (stop condition) then
 <stop point instructions>
 else
 <instructions>
 Recursive call (parameters changed)
 <Instructions>
 endif
end

void recursive(parameters) {
 if (stop condition)
 <stop point instructions>
 else
 {
 <instructions>
 Recursive call (parameters changed)
 <Instructions>
 }
}

Example:
1. Factorial

The function can be written as a recursive relationship:

iterative recursive

Algorithms and data structures 2 Chapter 1 Sub-programs

Function fact (n : Integer) : Integer
var i, f: Integer
begin
 f←1
 for i←2 to n do
 f← f * i
 ffor
 fact←f
end.

Function fact (n : Integer) : Integer
begin
 if (n = 0) then
 fact←1
 else
 fact←n*fact (n-1)
 endif
end.

int fact (int n){
 int f=1;
 for (i=2 ;i<= n ; i++)
 f← f * I;
 return f;
}

int fact (int n){
 if (n == 0) return 1;
 return n*fact(n-1);
}

How does it work?
We call the function fact for n=4 to calculate 4!
We call F=fact(4) which in turn calls fact(3) which calls fact(2) until it calls fact(0) which
terminates and returns 1 allowing fact(1) to be calculated which allows fact(2) to be calculated
until fact(4) is calculated fact(4). See below.

 n=4 n=3 n=2 n=1 n=0

fact(4) fact(3) fact(2) fact(1) fact(0)=1
The execution stack :
A memory location designated to hold parameters and local variables, and where the result is
stored for each running sub-program.
Usually, programming in recursive mode is easier and more readable, but it consumes a lot of
memory, for example to calculate 4! We reserve a place in the stack for the result, another for
the parameter n=4, then another place for the result of 3! And the parameter n = 3 and so on
until 0! is calculated The parameter n=0 is deleted, then the parameters and results are deleted
in the reverse order in which they were created.
Mutual recursive: a recursive program can call itself directly or indirectly, because it calls
another program, which in turn calls the first program.

Algorithms and data structures 2 Chapter 1 Sub-programs

Example:
To calculate π, we use the following relationship π/4=1-1/3+1/5-1/7+1/9... We create two
recursive functions, the first adding 1/n, calling the second for n=n-2, then subtracting 1/n
which in turn calls the first to add and so on until n becomes zero.
function f1(n: integer)
begin
 if n<=0 then
 f1←0
 else
 f1←1/n+f2(n-2)
 endif
end

function f2(n: integer)
begin
 if n<=0 then
 f2←0
 else
 f2←-1/n+f1(n-2)
 endif
end

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

#include <stdio.h>

float f2(int n);

float f1(int n) {
 if (n <= 0) return 0;
 return 1. / n + f2(n - 2);
}

float f2(int n) {
 if (n <= 0) return 0;
 return -1. / n + f1(n - 2);
}

void main() {
 printf("%f\n", 4*f1(2*100+1) *
4);
}

The f1 function calculates π/4, and to calculate π, we multiply the result by 4.
Important note: Since function f1 calls function f2, which is not yet defined in C, the header
of function f2 must be added without its body (the first line) before defining function f1,
knowing that its definition comes after .

	Chapter 1: subprograms : functions and procedures
	1 Introduction
	2 Definitions
	2.1 Sub-programs :
	2.1.1 Procedure :
	2.1.2 Function:
	2.1.3 Advantages of using subroutines :

	2.2 Declarations
	2.3 Where to declare subprograms :
	2.4 The invocation
	2.5 Examples

	3 Local and global variables
	4 Passing parameters
	5 Recursivity

