Chapter

Binary Relations on a Set

3.1 Basic Definitions

Definition 3.1 (Binary Relation) Let E be a set. A binary relation R on E is a property
that applies to pairs of elements from E. We denote xRy to indicate that the property

is true for the pair (z,y) € E x E.
Example

1. The inequality < is a relation on N, Z, and R.
2. The inclusion relation in the power set of E: ARB < A C B.

3. The divisibility relation on the integers: mRn < m divides n.
Definition 3.2 Let R be a relation on a set E.

1. R is reflexive if for every x € E, 2’Rx holds.
2. R is symmetric if for all z,y € E, xRy = yRx.
3. R is antisymmetric if for all z,y € E, (zRy AyRz) = = =y.

4. R is transitive if for all x,y,z € E, (xRy AyRz) = zRz.
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3.2 Equivalence Relations

Definition 3.3 (Equivalence Relation) A binary relation R on E is an equivalence relation

if and only if it is reflexive, symmetric, and transitive.

Example 1 The relation R of "being parallel” is an equivalence relation for the set F of affine
lines in the plane:
1. Reflexivity: A line is parallel to itself.
2. Symmetry: If line D is parallel to D', then D’ is parallel to D.
3. Transitivity: If line D is parallel to D" and D’ is parallel to D", then D is parallel to
D".
Example 2 Consider the following relation on Z:

TRy IkeZ|x—y=2k

1. R is reflexive because 3k =0 | x — z = 2k = 0, thus zRz.

2. Suppose zRy, then 3k € Z | v — y = 2k = y — x = 2k’ with ¥’ = —k € Z. Therefore,
yRz. Hence, R is symmetric.

3. Suppose 2Ry and yRz. Then, (3k € Z | v —y = 2k) and (I € Z | y — =z = 2K') by
adding these equations, we obtain x — z = 2k” with £’ = (k + k') € Z. Thus, 2Rz.

Therefore, R is transitive. Consequently, R is an equivalence relation.

Definition 3.4 Let R be an equivalence relation on a set E. The equivalence class of an
element x € E is the set of elements in F that are related to x by R, denoted by C(x) or
T

T={y € E|yRa}

Definition 3.5 Let R be an equivalence relation on a set E. The quotient set of £ by R is

the set of equivalence classes of R, denoted by E/R:

E/R={z|z € E}

3.2. Equivalence Relations
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Example In the previous example, we have
T={y €l |yRa}
={y e b |z —y=2k}
={x—-2k:kelZ}
={...,e—4x—-2z,x+2,x+4,...}.

0={yeFE|0Ry}={...,—4,-2,0,2,4,.. }, I={ye E| 1Ry} ={...,—3,—-1,1,3,...}

and 2 = 0.Therefore,Z/R = {7 |z € E} = {0,1}
Proposition 3.1 Let R be an equivalence relation on £. Then

1. An equivalence class is a subset of the set F, i.e., forallx € E, T C E.
2. An equivalence class is never empty, i.e., for all x € E, T # ¢.
3. The intersection of two distinct equivalence classes is empty, i.e., for all x,y € F,
TNG = ¢
4. Forall z,y € F, xRy < T = 1.
Theorem 3.1 Let R be an equivalence relation on E. The equivalence classes (Z),ecr form a

partition of E:

E= Urer®

3.3 Order Relation

Definition 3.6 (Order Relation) A binary relation R on E is an order relation if and only

if it is reflexive, antisymmetric, and transitive. We then say that (F,R) is an ordered set.
Example.

1. The inequality < is an order relation on N, Z, and R.

2. The inclusion relation in the power set of F is an order relation: ARB < A C B.

3.3. Order Relation
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Definition 3.7 Let R be an order relation on K. Two elements z and y of E are said to be

comparable if 2Ry or yRx.

Definition 3.8 (Total Order and Partial Order) Let R be an order relation on E. If any
two elements x and y are always comparable, we say that R is a total order relation
and the set E is called totally ordered. Otherwise (i.e., if there exist at least two non-
comparable elements x and y), we say that R is a partial order relation and the set E is

called partially ordered.
Example.

1. <is a total order on N, Z, and R.

2. The divisibility relation in N* is a partial order.
Definition 3.9 Let R be an order relation on F, and let M, m be two elements of E.

1. M is an upper bound of a subset A of F if tRM for every x € A.

2. m is a lower bound of a subset A of F if mRx for every z € A.
Example.

1. The set {8,10, 12} is bounded above by 120 and bounded below by 2 for the divisibility

relation ”/” on N.

2. P(E) is bounded below by () and bounded above by FE for the inclusion relation C.

3.4 Exercises with Solutions
Exercise 1. In R, the binary relation R is defined as follows:
Ve,y e R: 2Ry <= 2> —1=19¢>—1

1. Show that R is an equivalence relation on R.

2. Determine the quotient set R/R.

3.4. Exercises with Solutions
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Exercise 2. For every n € N*, a binary relation on Z is defined by
Ve,y€Z :2Ry<= 3k e€Z|x—y=kn

1. Show that R is an equivalence relation on Z.
2. Assume that n = 3:

(a) Determine the equivalence class of x € Z. Deduce the classes 0,1, 2.

(b) Show that Vm € Z:0=3m,1=3m+ 1,2 = 3m + 2.

ol

(c) Show that 0NT=0,1N2=0,0N2= (. Deduce the quotient set Z/R.

Exercise 3. Let E be a set and let A be a subset of E. A binary relation R is defined on
P(F) as follows:

VX,Y € P(E): XRY < ANX =ANY

1. Show that R is an equivalence relation on P(FE).

2. Determine the equivalence classes of () and E. Deduce A and C(A).
Exercise 4. Let R be a binary relation on R? defined by
(x,y,2)R(a,b,¢c) <= (]t —a| <b—y and z = ¢).

1. Show that R is a partial order relation on R3.

2. Is the order total on R3?
Exercise 5. A binary relation R is defined on R? as follows:
V(x1,01) , (22, 52) € R : (21,51) R (22, 42) <= 21 < 25 and y; < p.

1. Show that R is an order relation on R?.
2. Are the elements (2,4), (3,1) of R? comparable by R?
3. Is the order total on R??

4. Determine the set of upper bounds of A = {(1,2),(3,1)} C R%

Exercise 6. Determine whether the following relations R are order relations:

3.4. Exercises with Solutions
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—

. Vr,y e R: 2Ry <= €e* < e¥;

[\

. Vr,y € R:aRy <= |z] < |y|;
3. Va,y e N: 2Ry <= Ip,q > 1| y = px? (where p and ¢ are integers);

4. Vr,y € N*: 2Ry <= Im € N* | y = mu;

()4

. Vx,y €)1, +oof: 2Ry <~ T > ﬁ

3.4.1 Solution

Exercise 1.

1. Vo,ye R:a2Ry <= 2> —-1=9y* -1
(i) Reflexivity: Vo € R,2? — 1 =12? — 1 = zRuz.
(ii) Symmetry: zZRy < 22 —1=9> - 1=1y? -1 =2 - 1 = yRu.
(iii) Transitivity:

TRy > —-1=y> -1
& =2 —1=2"-1= 2Rz
YRz yr—1=22-1

Therefore, R is an equivalence relation.
2. R/R={z:z R}
Wehave z={y e R|yRz} ={yeR|y*—1=2?>—-1} ={z,—z |z € R}

Thus, R/R = {{z; — 2} ,z € R}.
Exercise 2.

1. Ve,y€Z:aRy< 3k e€Z |z —y=kn.

- Reflexivity: We know that Ve € Z:x —2=0=0-n with k =0 € Z, so zRx.

- Symmetry: 2Ry < x—y=kn=y—z = (—k)-n=Fk -n with ¥ = —k € Z. Thus,

yRex.

3.4. Exercises with Solutions
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- Transitivity:

xRy r—y=k -n/k €Z
& ; Summing both sides:

yRz y—2z=ky -n/ky €7 gives:
x—z=(ki+k)n=ky-nwithks=Fk +k €2
Therefore, xRz

2. Forn=3:Ve,yeZ : 2Ry 3kecZ:x—y=23k.

(a) For any

v€l:T={yeZ:yRay={y€Z:y=x+3k}

= {z+3k | keZ).

In particular:

0={yeZ:yR0} ={3k|keZ}=3ZL
1={yeZ:yR1} ={8k+1|keZ}=32+1
2={yeZ:yR2}={8k+2|keZ}=3Z+2.
(b)
For all m € Z:
0=3m OR(3m)

I1=3m+1 because Vm €Z:q 1R(3m+1) -

2=3m+2 2R(3m + 2)
Indeed, for all m € Z:
0— (3m) =3(—m)

1—(3m+1)=3(-m), —-m€eZ.

2 — (3m +2) = 3(—m)

(©)

3.4. Exercises with Solutions
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We have:
0oNI=20 0R1 0—1=—1%#3k
IN2=0 ,becauseq 1R2 .Indeed,{ 1-2=—1 £ 3ky ki, ko, ks € Z .
0N2=10 0R2 0—2=—2#3ks

We know that:

Z/R=A{T:x €}
={z:2=3m}U{z:2=3m+ 1} U{Z: 2 =3z + 2}.
={0,1,2}.

Exercise 4. (z,y,z)R(a,b,¢) < (|xt —a| < b—y and z = ¢)

(1)

(i) Reflexivity: (z,y,2)R(z,y,2) < (lr —2| =0 <y —y = 0 and z = z), hence R is
reflexive.

(ii) Anti-symmetry: Suppose (v,y, z)R(a,b,c) and (a,b, c)R(z,y, )
This implies [(Jz —a| <b—y (x) and |a —z| <y—0 (xx)) and z = (]
Then, (%) + (xx) gives: & = a, replacing x = a in (%) and (**) we find y = b. Thus,
(x,y,z) = (a,b,c). Therefore, R is anti-symmetric.

(iii) Transitivity: Suppose (v,y, z)R(a,b,c) and (a,b, c)R(«, 5,7)
This implies [(Jz —a| <b—y (x) and |a —a| < S —b (xx)) and z = ¢ = 7]
Thus, (%) + (x*) gives (|zr —a|+ |la—a| <b—y+ L —band z =c=7).

And since (Jlz —a|=|r—a+a—o| <|z—a|+|a—a| <y+ [ and z = 7) implies
(z,y,2)R(a, B,7). Hence, R is transitive.

Therefore, R is a partial order relation on R3.

(2) R is not total because 3(z,y,z) = (0,0,2) € R and (a,b,c) = (0,0,3) € R?® such that
(0,0,2)K(0,0,3) and (0,0,3)K(0,0,2).

Exercise 5. V (z1,91), (72, 42) € R? : 11 < 2 and y; < yo.

3.4. Exercises with Solutions
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(1)
(i) Reflexivity: We know that

r< T
V(z,y) € R?: = (x,y)R(x,y) = R is reflexive.

y<y

(ii) Anti-symmetry: Suppose (z1,y1) R (22,92) and (21, y2) R (z1,y1)

1 S T2 AY1 < Yo 1 = T2
= A = A = (x1,y1) = (22,y2) . Thus, R is anti-symmetric.
T2 ST AY2 S Y1 =Y

(iii) Transitivity: Let (z1,v1), (72,92), (z3,y3) € R?

(z1,91) R(22,92) 1 S T2 ANY1 < Yo T < T3
A = A = AN = ('rlayl)R<x3vy3)
(z2,92) R (73,y3) To S 23N\ Y2 < Y3 Y1 < Y3

Therefore, R is transitive. Hence, R is a partial order relation on R2.

(2) (2,4) and (3,1) are not comparable because (1,4) and (3,1) do not satisfy the relation. In

2<3 32 (2,4)R(3,1)
fact, A and A = A
41 1<2 (3,1)R(2,4)

(3) The order is partial because Ja = (2,4) and b = (3, 1) where o &b and bRa.

(4) t = (x,y) € R? is an upper bound of A if Va € A : aRt.

(1,2)R(z,y) 1<zA2<y. r >3
= A = A = A
(3, D)R(x,y) 3<zAN1<y. y =2

= Maj(A) ={(z,y) 2 =23 ANy >2}.
R2

3.4. Exercises with Solutions
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Algebraic Structures

4.1 Internal Composition Laws and Their Properties

4.1.1 Internal Composition Laws

Definition 4.1 Let E be a set. An internal composition law % on F is a mapping from £ X F

to B

x: KX E —F

(z,y) = xx*y
Notations

1. Instead of "internal composition law,” we also say "operation of internal composition”

or simply "internal operation.”

2. (E, %) is often used to denote a set F equipped with an internal operation .
Example.

1. The laws U (union), N (intersection), and A (symmetric difference) on P(E) (the
power set of E).

2. The law (composition) on F(F) (the set of functions from F to E).

51
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3. The laws + and x on N,Z,Q, R, and C.
4. Let * be defined on R by z*y = ﬁy Then * is not an internal operation since (—1, 1)

does not have an image.

Definition 4.2 (Stable Subset for an Operation) Let E be a set equipped with an inter-
nal composition law * and F' be a subset of E. We say that F' is stable under the law *
if

V(iz,y) EF X F:xxyeF

Example.

1. Rt and R~ are two stable subsets of R under the operation +.

2. For the operation x, RT is still a stable subset, but R~ is not.

4.1.2 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an in-

ternal composition law *.

We say that * is commutative if V(z,y) € E* :x*xy =y * x.

We say that * is associative if V(z,y,2) € E* : (z*y) * 2 = 2 % (y x 2).
Example.

1. The addition and multiplication laws on N, Z, Q, R, and C are commutative and asso-

clative.

2. Also, the union (U), intersection (M), and symmetric difference (A) laws on P(E) are

commutative and associative.

3. The composition law (o) on F(F) is associative but not commutative, because fog #
go f in general.

4. Let * be the law defined on Q by: x xy = wTer Then * is commutative,

because z xy = ¥ = X2 — y % - but it is not associative,

4.1. Internal Composition Laws and Their Properties
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because (—1%0) x1 =1 # -1 (0x1) = =

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition

law *. Let e be an element of E. We say that e is the neutral element for the law *, if

VieFE :xxe=exx=2x

Remark 4.1 If the law * is commutative, the equality x *x e = e * x is automatically satisfied.
Example.
1. In N,Z,Q,R, and C, 0 is neutral for the addition law, and 1 is neutral for the multi-

plication law.

2. In P(E), the empty set ({)) is neutral for the union law (U), and E is neutral for the

intersection law (N).

3. Let % be the law defined on R by: zxy =x +y — 1. Then e = 1 is a neutral element,

because rxe =2 = xr+e—1=x. Thus, e=1.

Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the

law * if it exists, is unique.

Proof. Indeed, let ¢’ be another neutral element for x, then ¢/ = ¢’ x e = e x ¢/ = e. Thus, the

neutral element is unique.

Definition 4.5 (Inverse Element) Let E be a set equipped with an internal composition
law * and let e be a neutral element. We say that the element z of F has an inverse

element 2’ of B, if Vx e E:xx2' =2’ xx =e.
Example.

1. In R, the invertible elements for the multiplication law (x) are the non-zero elements.

2. Let * be the law defined on R by: xxy = x +y — 1. Then € R has an inverse

element ' =2 — x, because rx 2’ =1=x+2 ' —1=1. Thus, 2’ =2 — z.

4.1. Internal Composition Laws and Their Properties
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4.1.3 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an in-
ternal composition law x.
We say that * is commutative if V(x,y) € E? 1 x xy = y * x.
We say that * is associative if V(z,y,2) € E* : (x*xy) x 2 = z % (y * 2).
Example.
1. The addition and multiplication laws on N, Z, Q. R, and C are commutative and

associative.

2. The union (U), intersection (N), and symmetric difference (A) laws on P(E) are

commutative and associative.

3. The composition law (o) on F(F) is associative but not commutative, because fo g #

go f in general.

4. Let % be the law defined on Q by: z xy = % Then * is commutative, because

rxy =S¥ = Y2 = yx g, but it is not associative, because (—1%0) x 1 = 1 £
“1x(0%1) = =L,

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition
law *. Let e be an element of E. We say that e is the neutral element for the law x if

VreE:xxe=e*xx =01
Remark 4.1 If the law % is commutative, the equality x x ¢ = e *x x is automatically satisfied.
Example.

1. InN, Z, Q, R, and C, 0 is the neutral element for the addition law, and 1 is the neutral

element for the multiplication law.

2. In P(E), the empty set () is the neutral element for the union law U, and E is the

neutral element for the intersection law N.

4.1. Internal Composition Laws and Their Properties



