Chapter 3

Binary Relations on a Set

3.1 Basic Definitions

Definition 3.1 (Binary Relation) Let E be a set. A binary relation \mathcal{R} on E is a property that applies to pairs of elements from E. We denote $x\mathcal{R}y$ to indicate that the property is true for the pair $(x,y) \in E \times E$.

Example

- 1. The inequality \leq is a relation on \mathbb{N}, \mathbb{Z} , and \mathbb{R} .
- **2.** The inclusion relation in the power set of $E: ARB \Leftrightarrow A \subset B$.
- **3.** The divisibility relation on the integers: $m\mathcal{R}n \Leftrightarrow m$ divides n.

Definition 3.2 Let \mathcal{R} be a relation on a set E.

- 1. \mathcal{R} is reflexive if for every $x \in E$, $x\mathcal{R}x$ holds.
- **2.** \mathcal{R} is symmetric if for all $x, y \in E$, $x\mathcal{R}y \Rightarrow y\mathcal{R}x$.
- **3.** \mathcal{R} is antisymmetric if for all $x, y \in E$, $(x\mathcal{R}y \wedge y\mathcal{R}x) \Rightarrow x = y$.
- **4.** \mathcal{R} is transitive if for all $x, y, z \in E$, $(x\mathcal{R}y \wedge y\mathcal{R}z) \Rightarrow x\mathcal{R}z$.

3.2 Equivalence Relations

Definition 3.3 (Equivalence Relation) A binary relation \mathcal{R} on E is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Example 1 The relation \mathcal{R} of "being parallel" is an equivalence relation for the set E of affine lines in the plane:

- 1. Reflexivity: A line is parallel to itself.
- **2.** Symmetry: If line D is parallel to D', then D' is parallel to D.
- **3.** Transitivity: If line D is parallel to D' and D' is parallel to D'', then D is parallel to D''.

Example 2 Consider the following relation on \mathbb{Z} :

$$x\mathcal{R}y \Leftrightarrow \exists k \in \mathbb{Z} \mid x - y = 2k$$

- 1. \mathcal{R} is reflexive because $\exists k = 0 \mid x x = 2k = 0$, thus $x\mathcal{R}x$.
- **2.** Suppose $x\mathcal{R}y$, then $\exists k \in \mathbb{Z} \mid x-y=2k \Rightarrow y-x=2k'$ with $k'=-k \in \mathbb{Z}$. Therefore, $y\mathcal{R}x$. Hence, \mathcal{R} is symmetric.
- **3.** Suppose $x\mathcal{R}y$ and $y\mathcal{R}z$. Then, $(\exists k \in \mathbb{Z} \mid x-y=2k)$ and $(\exists k' \in \mathbb{Z} \mid y-z=2k')$ by adding these equations, we obtain x-z=2k'' with $k''=(k+k')\in \mathbb{Z}$. Thus, $x\mathcal{R}z$. Therefore, \mathcal{R} is transitive. Consequently, \mathcal{R} is an equivalence relation.
- **Definition 3.4** Let \mathcal{R} be an equivalence relation on a set E. The equivalence class of an element $x \in E$ is the set of elements in E that are related to x by \mathcal{R} , denoted by $\mathcal{C}(x)$ or \bar{x} :

$$\bar{x} = \{ y \in E \mid y\mathcal{R}x \}$$

Definition 3.5 Let \mathcal{R} be an equivalence relation on a set E. The quotient set of E by \mathcal{R} is the set of equivalence classes of \mathcal{R} , denoted by E/\mathcal{R} :

$$E/\mathcal{R} = \{ \bar{x} \mid x \in E \}$$

Example In the previous example, we have

$$\bar{x} = \{ y \in E \mid y \mathcal{R} x \}$$

$$= \{ y \in E \mid x - y = 2k \}$$

$$= \{ x - 2k : k \in \mathbb{Z} \}$$

$$= \{ \dots, x - 4, x - 2, x, x + 2, x + 4, \dots \}.$$

$$\bar{0} = \{ y \in E \mid 0 \mathcal{R} y \} = \{ \dots, -4, -2, 0, 2, 4, \dots \}, \ \bar{1} = \{ y \in E \mid 1 \mathcal{R} y \} = \{ \dots, -3, -1, 1, 3, \dots \}$$

and
$$\overline{2} = \overline{0}$$
. Therefore, $\mathbb{Z}/\mathcal{R} = {\overline{x} \mid x \in E} = {\overline{0}, \overline{1}}$

Proposition 3.1 Let \mathcal{R} be an equivalence relation on E. Then

- 1. An equivalence class is a subset of the set E, i.e., for all $x \in E$, $\bar{x} \subset E$.
- **2.** An equivalence class is never empty, i.e., for all $x \in E$, $\bar{x} \neq \phi$.
- **3.** The intersection of two distinct equivalence classes is empty, i.e., for all $x, y \in E$, $\bar{x} \cap \bar{y} = \phi$.
- **4.** For all $x, y \in E$, $x \mathcal{R} y \Leftrightarrow \bar{x} = \bar{y}$.

Theorem 3.1 Let \mathcal{R} be an equivalence relation on E. The equivalence classes $(\bar{x})_{x \in E}$ form a partition of E:

$$E = \bigcup_{x \in E} \overline{x}$$

3.3 Order Relation

Definition 3.6 (Order Relation) A binary relation \mathcal{R} on E is an order relation if and only if it is reflexive, antisymmetric, and transitive. We then say that (E, \mathcal{R}) is an ordered set.

Example.

- 1. The inequality \leq is an order relation on \mathbb{N}, \mathbb{Z} , and \mathbb{R} .
- **2.** The inclusion relation in the power set of E is an order relation: $ARB \Leftrightarrow A \subset B$.

Definition 3.7 Let \mathcal{R} be an order relation on E. Two elements x and y of E are said to be comparable if $x\mathcal{R}y$ or $y\mathcal{R}x$.

Definition 3.8 (Total Order and Partial Order) Let \mathcal{R} be an order relation on E. If any two elements x and y are always comparable, we say that \mathcal{R} is a total order relation and the set E is called totally ordered. Otherwise (i.e., if there exist at least two non-comparable elements x and y), we say that \mathcal{R} is a partial order relation and the set E is called partially ordered.

Example.

- 1. \leq is a total order on \mathbb{N}, \mathbb{Z} , and \mathbb{R} .
- **2.** The divisibility relation in \mathbb{N}^* is a partial order.

Definition 3.9 Let \mathcal{R} be an order relation on E, and let M, m be two elements of E.

- 1. M is an upper bound of a subset A of E if xRM for every $x \in A$.
- **2.** m is a lower bound of a subset A of E if $m\mathcal{R}x$ for every $x \in A$.

Example.

- 1. The set $\{8, 10, 12\}$ is bounded above by 120 and bounded below by 2 for the divisibility relation "/" on \mathbb{N} .
- **2.** $\mathcal{P}(E)$ is bounded below by \emptyset and bounded above by E for the inclusion relation \subset .

3.4 Exercises with Solutions

Exercise 1. In \mathbb{R} , the binary relation \mathcal{R} is defined as follows:

$$\forall x, y \in \mathbb{R} : x\mathcal{R}y \iff x^2 - 1 = y^2 - 1$$

- 1. Show that \mathcal{R} is an equivalence relation on \mathbb{R} .
- 2. Determine the quotient set \mathbb{R}/\mathcal{R} .

Exercise 2. For every $n \in \mathbb{N}^*$, a binary relation on \mathbb{Z} is defined by

$$\forall x, y \in \mathbb{Z} : x\mathcal{R}y \iff \exists k \in \mathbb{Z} \mid x - y = kn$$

- 1. Show that \mathcal{R} is an equivalence relation on \mathbb{Z} .
- **2.** Assume that n = 3:
 - (a) Determine the equivalence class of $x \in \mathbb{Z}$. Deduce the classes $\overline{0}, \overline{1}, \overline{2}$.
 - (b) Show that $\forall m \in \mathbb{Z} : \overline{0} = \overline{3m}, \overline{1} = \overline{3m+1}, \overline{2} = \overline{3m+2}.$
 - (c) Show that $\overline{0} \cap \overline{1} = \emptyset$, $\overline{1} \cap \overline{2} = \emptyset$, $\overline{0} \cap \overline{2} = \emptyset$. Deduce the quotient set \mathbb{Z}/\mathcal{R} .

Exercise 3. Let E be a set and let A be a subset of E. A binary relation \mathcal{R} is defined on $\mathcal{P}(E)$ as follows:

$$\forall X, Y \in \mathcal{P}(E) : X\mathcal{R}Y \iff A \cap X = A \cap Y$$

- 1. Show that \mathcal{R} is an equivalence relation on $\mathcal{P}(E)$.
- **2.** Determine the equivalence classes of \emptyset and E. Deduce \overline{A} and $\overline{C_E(A)}$.

Exercise 4. Let \mathcal{R} be a binary relation on \mathbb{R}^3 defined by

$$(x, y, z)\mathcal{R}(a, b, c) \iff (|x - a| \le b - y \text{ and } z = c).$$

- 1. Show that \mathcal{R} is a partial order relation on \mathbb{R}^3 .
- **2.** Is the order total on \mathbb{R}^3 ?

Exercise 5. A binary relation \mathcal{R} is defined on \mathbb{R}^2 as follows:

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 : (x_1, y_1) \mathcal{R}(x_2, y_2) \iff x_1 \leq x_2 \text{ and } y_1 \leq y_2.$$

- 1. Show that \mathcal{R} is an order relation on \mathbb{R}^2 .
- **2.** Are the elements (2,4),(3,1) of \mathbb{R}^2 comparable by \mathbb{R} ?
- **3.** Is the order total on \mathbb{R}^2 ?
- **4.** Determine the set of upper bounds of $A = \{(1,2), (3,1)\} \subset \mathbb{R}^2$.

Exercise 6. Determine whether the following relations \mathcal{R} are order relations:

- 1. $\forall x, y \in \mathbb{R} : x\mathcal{R}y \iff e^x < e^y$;
- 2. $\forall x, y \in \mathbb{R} : x\mathcal{R}y \iff |x| \leq |y|$;
- **3.** $\forall x, y \in \mathbb{N} : x\mathcal{R}y \iff \exists p, q \geq 1 \mid y = px^q \text{ (where } p \text{ and } q \text{ are integers)};$
- **4.** $\forall x, y \in \mathbb{N}^* : x\mathcal{R}y \iff \exists m \in \mathbb{N}^* \mid y = mx;$
- 5. $\forall x, y \in]1, +\infty[: x\mathcal{R}y \iff \frac{x}{1+x^2} \ge \frac{y}{1+y^2}.$

3.4.1 Solution

Exercise 1.

- 1. $\forall x, y \in \mathbb{R} : x\mathcal{R}y \iff x^2 1 = y^2 1$
 - (i) Reflexivity: $\forall x \in \mathbb{R}, x^2 1 = x^2 1 \Rightarrow xRx$.
 - (ii) Symmetry: $x\mathcal{R}y \Leftrightarrow x^2 1 = y^2 1 \Rightarrow y^2 1 = x^2 1 \Rightarrow y\mathcal{R}x$.
 - (iii) Transitivity:

$$\begin{cases} x\mathcal{R}y & \Leftrightarrow \begin{cases} x^2 - 1 = y^2 - 1 \\ y\mathcal{R}z & \end{cases} \Rightarrow x^2 - 1 = z^2 - 1 \Rightarrow x\mathcal{R}z.$$

Therefore, \mathcal{R} is an equivalence relation.

2. $\mathbb{R}/\mathbb{R} = \{\bar{x} : x \in \mathbb{R}\}.$

We have
$$\bar{x} = \{y \in \mathbb{R} \mid y\mathbb{R}x\} = \{y \in \mathbb{R} \mid y^2 - 1 = x^2 - 1\} = \{x, -x \mid x \in \mathbb{R}\}$$

Thus,
$$\mathbb{R}/\mathbb{R} = \{\{x_1 - x\}, x \in \mathbb{R}\}.$$

Exercise 2.

- 1. $\forall x, y \in \mathbb{Z} : x\mathcal{R}y \Leftrightarrow \exists k \in \mathbb{Z} \mid x y = kn$.
 - Reflexivity: We know that $\forall x \in \mathbb{Z} : x x = 0 = 0 \cdot n$ with $k = 0 \in \mathbb{Z}$, so $x \mathcal{R} x$.
 - Symmetry: $x\mathcal{R}y \Leftrightarrow x-y=kn \Rightarrow y-x=(-k)\cdot n=k'\cdot n$ with $k'=-k\in\mathbb{Z}$. Thus, $y\mathcal{R}x$.

3.4. Exercises with Solutions

- Transitivity:

$$\begin{cases} x\mathcal{R}y & \Leftrightarrow \begin{cases} x-y=k_1\cdot n/k_1 \in \mathbb{Z} \\ y\mathcal{R}z & \end{cases} \text{ ; Summing both sides: } \\ y-z=k_2\cdot n/k_2 \in \mathbb{Z} \text{ gives: } \end{cases}$$

$$x - z = (k_1 + k_2)n = k_3 \cdot n \text{ with } k_3 = k_1 + k_2 \in \mathbb{Z}$$

Therefore, xRz

- **2.** For $n = 3 : \forall x, y \in \mathbb{Z} : x\mathcal{R}y \Leftrightarrow \exists k \in \mathbb{Z} : x y = 3k$.
 - (a) For any

$$x \in \mathbb{Z} : \bar{x} = \{ y \in \mathbb{Z} : y \in \mathbb{Z} : y = x + 3k \}$$
$$= \{ x + 3k \mid k \in \mathbb{Z} \}.$$

In particular:

$$\overline{0} = \{ y \in \mathbb{Z} : y\mathcal{R}0 \} = \{ 3k \mid k \in \mathbb{Z} \} = 3\mathbb{Z}$$

$$\overline{1} = \{ y \in \mathbb{Z} : y\mathcal{R}1 \} = \{ 3k+1 \mid k \in \mathbb{Z} \} = 3\mathbb{Z} + 1$$

$$\overline{2} = \{ y \in \mathbb{Z} : y\mathcal{R}2 \} = \{ 3k+2 \mid k \in \mathbb{Z} \} = 3\mathbb{Z} + 2.$$

(b)

For all $m \in \mathbb{Z}$:

$$\begin{cases} \overline{0} = 3\overline{m} \\ \overline{1} = 3\overline{m} + 1 & \text{because} \quad \forall m \in \mathbb{Z} : \begin{cases} 0\mathcal{R}(3m) \\ 1\mathcal{R}(3m+1) \\ 2\mathcal{R}(3m+2) \end{cases}$$

Indeed, for all $m \in \mathbb{Z}$:

$$\begin{cases}
0 - (3m) = 3(-m) \\
1 - (3m+1) = 3(-m), & -m \in \mathbb{Z}. \\
2 - (3m+2) = 3(-m)
\end{cases}$$

(C)

We have:

$$\begin{cases}
\overline{0} \cap \overline{1} = \emptyset \\
\overline{1} \cap \overline{2} = \emptyset
\end{cases}, \text{ because } \begin{cases}
0\mathcal{R}1 \\
1\mathcal{R}2
\end{cases}. \text{ Indeed, } \begin{cases}
0 - 1 = -1 \neq 3k_1 \\
1 - 2 = -1 \neq 3k_2
\end{cases}, \quad k_1, k_2, k_3 \in \mathbb{Z}.$$

$$0 - 2 = -2 \neq 3k_3$$

We know that:

$$\mathbb{Z}/R = \{\bar{x} : x \in \mathbb{Z}\}\$$

$$= \{\bar{x} : x = 3m\} \cup \{\bar{x} : x = 3m + 1\} \cup \{\bar{x} : x = 3x + 2\}.$$

$$= \{\bar{0}, \bar{1}, \bar{2}\}.$$

Exercise 4. $(x, y, z)R(a, b, c) \Leftrightarrow (|x - a| \leqslant b - y \text{ and } z = c)$

(1)

- (i) Reflexivity: $(x, y, z)R(x, y, z) \Leftrightarrow (|x x| = 0 \leqslant y y = 0 \text{ and } z = z)$, hence R is reflexive.
- (ii) Anti-symmetry: Suppose (v, y, z)R(a, b, c) and (a, b, c)R(x, y, z)This implies $[(|x - a| \le b - y \quad (*) \text{ and } |a - x| \le y - b \quad (**)) \text{ and } z = c]$ Then, (*) + (**) gives: x = a, replacing x = a in (*) and (**) we find y = b. Thus, (x, y, z) = (a, b, c). Therefore, R is anti-symmetric.
- (iii) Transitivity: Suppose (v, y, z)R(a, b, c) and $(a, b, c)R(\alpha, \beta, \gamma)$ This implies $[(|x - a| \le b - y \ (*) \text{ and } |a - \alpha| \le \beta - b \ (**)) \text{ and } z = c = \gamma]$ Thus, (*) + (**) gives $(|x - a| + |a - \alpha| \le b - y + \beta - b \text{ and } z = c = \gamma)$. And since $(|x - \alpha| = |x - a + a - \alpha| \le |x - a| + |a - \alpha| \le y + \beta \text{ and } z = \gamma)$ implies $(x, y, z)R(\alpha, \beta, \gamma)$. Hence, R is transitive.

Therefore, R is a partial order relation on \mathbb{R}^3 .

(2) R is not total because $\exists (x, y, z) = (0, 0, 2) \in \mathbb{R}^3$ and $(a, b, c) = (0, 0, 3) \in \mathbb{R}^3$ such that $(0, 0, 2) \cancel{R}(0, 0, 3)$ and $(0, 0, 3) \cancel{R}(0, 0, 2)$.

Exercise 5. $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 : x_1 \leq x_2 \text{ and } y_1 \leq y_2.$

(1)

(i) Reflexivity: We know that

$$\forall (x,y) \in \mathbb{R}^2 : \begin{cases} x \leqslant x \\ y \leqslant y \end{cases} \Rightarrow (x,y)R(x,y) \Rightarrow R \text{ is reflexive.}$$

(ii) Anti-symmetry: Suppose $(x_1, y_1) R(x_2, y_2)$ and $(x_1, y_2) R(x_1, y_1)$

$$\Rightarrow \begin{cases} x_1 \leqslant x_2 \land y_1 \leqslant y_2 \\ \land \qquad \Rightarrow \begin{cases} x_1 = x_2 \\ \land \qquad \Rightarrow (x_1, y_1) = (x_2, y_2) \text{ . Thus, } R \text{ is anti-symmetric.} \\ y_1 = y_2 \end{cases}$$

(iii) Transitivity: Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2$

$$\begin{cases} (x_1, y_1) R (x_2, y_2) \\ \wedge \\ (x_2, y_2) R (x_3, y_3) \end{cases} \Rightarrow \begin{cases} x_1 \leqslant x_2 \wedge y_1 \leqslant y_2 \\ \wedge \\ x_2 \leqslant x_3 \wedge y_2 \leqslant y_3 \end{cases} \Rightarrow \begin{cases} x_1 \leqslant x_3 \\ \wedge \\ y_1 \leqslant y_3 \end{cases}$$

Therefore, R is transitive. Hence, R is a partial order relation on \mathbb{R}^2 .

(2) (2,4) and (3,1) are not comparable because (1,4) and (3,1) do not satisfy the relation. In fact, $\begin{cases} 2 \leqslant 3 & \text{fact,} \\ \wedge & \text{and} \end{cases} \begin{cases} 3 \not\approx 2 & \text{for } (2,4) \not\in (3,1) \\ \wedge & \text{fact,} \end{cases}$

(3) The order is partial because
$$\exists a = (2,4)$$
 and $b = (3,1)$ where $a \not R b$ and $b \not R a$.

(4) $t = (x, y) \in \mathbb{R}^2$ is an upper bound of A if $\forall a \in A : aRt$.

$$\Rightarrow \begin{cases} (1,2)R(x,y) \\ \land \\ (3,1)R(x,y) \end{cases} \Rightarrow \begin{cases} 1 \leqslant x \land 2 \leqslant y. \\ \land \\ 3 \leqslant x \land 1 \leqslant y. \end{cases} \Rightarrow \begin{cases} x \geqslant 3 \\ \land \\ y \geqslant 2 \end{cases}$$
$$\Rightarrow \text{Maj}(A) = \{(x,y) : x \geqslant 3 \land y \geqslant 2\}.$$

Chapter 4

Algebraic Structures

4.1 Internal Composition Laws and Their Properties

4.1.1 Internal Composition Laws

Definition 4.1 Let E be a set. An internal composition law * on E is a mapping from $E \times E$ to E:

$$*: E \times E \longrightarrow E$$

$$(x,y) \mapsto x * y$$

Notations

- Instead of "internal composition law," we also say "operation of internal composition" or simply "internal operation."
- **2.** (E,*) is often used to denote a set E equipped with an internal operation *.

Example.

- 1. The laws \cup (union), \cap (intersection), and \triangle (symmetric difference) on $\mathcal{P}(E)$ (the power set of E).
- 2. The law (composition) on $\mathcal{F}(E)$ (the set of functions from E to E).

- **3.** The laws + and \times on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} .
- **4.** Let * be defined on \mathbb{R} by $x * y = \frac{1}{x+y}$. Then * is not an internal operation since (-1,1) does not have an image.

Definition 4.2 (Stable Subset for an Operation) Let E be a set equipped with an internal composition law * and F be a subset of E. We say that F is stable under the law * if

$$\forall (x,y) \in F \times F : x * y \in F$$

Example.

- 1. \mathbb{R}^+ and \mathbb{R}^- are two stable subsets of \mathbb{R} under the operation +.
- **2.** For the operation \times , \mathbb{R}^+ is still a stable subset, but \mathbb{R}^- is not.

4.1.2 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an internal composition law *.

We say that * is commutative if $\forall (x, y) \in E^2 : x * y = y * x$.

We say that * is associative if $\forall (x, y, z) \in E^3 : (x * y) * z = x * (y * z)$.

Example.

- 1. The addition and multiplication laws on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are commutative and associative.
- **2.** Also, the union (\cup) , intersection (\cap) , and symmetric difference (\triangle) laws on $\mathcal{P}(E)$ are commutative and associative.
- **3.** The composition law (\circ) on $\mathcal{F}(E)$ is associative but not commutative, because $f \circ g \neq g \circ f$ in general.
- **4.** Let * be the law defined on $\mathbb Q$ by: $x*y=\frac{x+y}{2}$. Then * is commutative, because $x*y=\frac{x+y}{2}=\frac{y+x}{2}=y*x$, but it is not associative,

4.1. Internal Composition Laws and Their Properties

because
$$(-1*0)*1 = \frac{1}{4} \neq -1*(0*1) = \frac{-1}{4}$$
.

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition law *. Let e be an element of E. We say that e is the neutral element for the law *, if

$$\forall x \in E : x * e = e * x = x$$

Remark 4.1 If the law * is commutative, the equality x * e = e * x is automatically satisfied.

Example.

- 1. In $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} , 0 is neutral for the addition law, and 1 is neutral for the multiplication law.
- **2.** In $\mathcal{P}(E)$, the empty set (\emptyset) is neutral for the union law (\cup) , and E is neutral for the intersection law (\cap) .
- **3.** Let * be the law defined on \mathbb{R} by: x * y = x + y 1. Then e = 1 is a neutral element, because $x * e = x \Rightarrow x + e 1 = x$. Thus, e = 1.
- Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the law * if it exists, is unique.
- **Proof.** Indeed, let e' be another neutral element for *, then e' = e' * e = e * e' = e. Thus, the neutral element is unique.
- **Definition 4.5 (Inverse Element)** Let E be a set equipped with an internal composition law * and let e be a neutral element. We say that the element x of E has an inverse element x' of E, if $\forall x \in E : x * x' = x' * x = e$.

Example.

- 1. In \mathbb{R} , the invertible elements for the multiplication law (\times) are the non-zero elements.
- **2.** Let * be the law defined on \mathbb{R} by: x*y=x+y-1. Then $x\in\mathbb{R}$ has an inverse element x'=2-x, because $x*x'=1\Rightarrow x+x'-1=1$. Thus, x'=2-x.

4.1. Internal Composition Laws and Their Properties

4.1.3 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an internal composition law *.

We say that * is commutative if $\forall (x,y) \in E^2 : x * y = y * x$.

We say that * is associative if $\forall (x, y, z) \in E^3 : (x * y) * z = x * (y * z)$.

Example.

- 1. The addition and multiplication laws on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are commutative and associative.
- **2.** The union (\cup) , intersection (\cap) , and symmetric difference (\triangle) laws on $\mathcal{P}(E)$ are commutative and associative.
- **3.** The composition law (\circ) on $\mathcal{F}(E)$ is associative but not commutative, because $f \circ g \neq g \circ f$ in general.
- **4.** Let * be the law defined on \mathbb{Q} by: $x*y = \frac{x+y}{2}$. Then * is commutative, because $x*y = \frac{x+y}{2} = \frac{y+x}{2} = y*x$, but it is not associative, because $(-1*0)*1 = \frac{1}{4} \neq -1*(0*1) = \frac{-1}{4}$.

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition law *. Let e be an element of E. We say that e is the neutral element for the law * if $\forall x \in E : x * e = e * x = x$.

Remark 4.1 If the law * is commutative, the equality x * e = e * x is automatically satisfied.

Example.

- 1. In \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , 0 is the neutral element for the addition law, and 1 is the neutral element for the multiplication law.
- **2.** In $\mathcal{P}(E)$, the empty set \emptyset is the neutral element for the union law \cup , and E is the neutral element for the intersection law \cap .

4.1. Internal Composition Laws and Their Properties