Chapter I

Algebraic Structures

4.1 Internal Composition Laws and Their Properties

4.1.1 Internal Composition Laws

Definition 4.1 Let E be a set. An internal composition law % on F is a mapping from £ X F

to B

x: KX E —F

(z,y) = axx*y
Notations

1. Instead of "internal composition law,” we also say "operation of internal composition”

or simply "internal operation.”

2. (E, %) is often used to denote a set F equipped with an internal operation .
Example.

1. The laws U (union), N (intersection), and A (symmetric difference) on P(E) (the
power set of E).

2. The law (composition) on F(F) (the set of functions from F to E).
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3. The laws + and x on N,Z,Q, R, and C.
4. Let * be defined on R by z*y = ﬁy Then * is not an internal operation since (—1, 1)

does not have an image.

Definition 4.2 (Stable Subset for an Operation) Let E be a set equipped with an inter-
nal composition law * and F' be a subset of E. We say that F' is stable under the law *
if

Viz,y) e FXF:xxyeF

Example.

1. Rt and R~ are two stable subsets of R under the operation +.

2. For the operation x, RT is still a stable subset, but R~ is not.

4.1.2 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an in-

ternal composition law *.

We say that * is commutative if V(z,y) € E* :x %y = y * x.

We say that * is associative if V(z,y,2) € E* : (z*y) * 2 = 2 % (y x 2).
Example.

1. The addition and multiplication laws on N, Z, Q, R, and C are commutative and asso-

clative.

2. Also, the union (U), intersection (M), and symmetric difference (A) laws on P(E) are

commutative and associative.

3. The composition law (o) on F(F) is associative but not commutative, because fog #
go f in general.

4. Let * be the law defined on Q by: x xy = %’y Then * is commutative,

because x xy = ¥ = XL — y % - but it is not associative,
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because (—1%0) 1 =1 # —1%(0x1) = =

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition

law *. Let e be an element of E. We say that e is the neutral element for the law *, if

VieecFE . xxe=exx=2x

Remark 4.1 If the law * is commutative, the equality x *x e = e * x is automatically satisfied.
Example.
1. In N,Z,Q,R, and C, 0 is neutral for the addition law, and 1 is neutral for the multi-

plication law.

2. In P(E), the empty set ({)) is neutral for the union law (U), and E is neutral for the

intersection law (N).

3. Let % be the law defined on R by: zxy =x +y — 1. Then e = 1 is a neutral element,

because rxe =2 = xr+e—1=x. Thus, e=1.

Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the

law * if it exists, is unique.

Proof. Indeed, let ¢’ be another neutral element for x, then ¢/ = ¢’ x e = e x ¢/ = e. Thus, the

neutral element is unique.

Definition 4.5 (Inverse Element) Let E be a set equipped with an internal composition
law * and let e be a neutral element. We say that the element z of F has an inverse

element 2’ of E, ifVx e E:xx2' =2’ xx =e.
Example.

1. In R, the invertible elements for the multiplication law () are the non-zero elements.

2. Let * be the law defined on R by: xxy = x +y — 1. Then € R has an inverse

element ' =2 — x, because rx 2’ =1=x+2 ' —1=1. Thus, 2’ =2 — z.
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4.1.3 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an in-
ternal composition law x.
We say that * is commutative if V(x,y) € E? 1 x xy = y * x.
We say that * is associative if V(z,y,2) € E* : (zx*xy) x 2 = z % (y * 2).
Example.
1. The addition and multiplication laws on N, Z, Q. R, and C are commutative and

associative.

2. The union (U), intersection (N), and symmetric difference (A) laws on P(E) are

commutative and associative.

3. The composition law (o) on F(E) is associative but not commutative, because fo g #

go f in general.

4. Let % be the law defined on Q by: z xy = % Then * is commutative, because

rxy =¥ = ¥ = yx g, but it is not associative, because (—1%0)x1 = 1 £
“1w(0%1) = =L,

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition
law *. Let e be an element of E. We say that e is the neutral element for the law x if

VreE:xxe=e*xx =u1x.
Remark 4.1 If the law *x is commutative, the equality x x ¢ = e *x x is automatically satisfied.
Example.

1. InN, Z, Q, R, and C, 0 is the neutral element for the addition law, and 1 is the neutral

element for the multiplication law.

2. In P(E), the empty set () is the neutral element for the union law U, and E is the

neutral element for the intersection law N.

4.1. Internal Composition Laws and Their Properties



Chapter 4. Algebraic Structures 55

3. Let * be the law defined on R by: zxy =x +y — 1. Then e = 1 is a neutral element,

because x xe =x +e —1=2x. Thus, e = 1.

Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the

law *, if it exists, is unique.

Proof. Indeed, let ¢’ be another neutral element for , then ¢/ = ¢’ x e = e x ¢/ = e. Thus, the

neutral element is unique.

Definition 4.5 (Inverse Element) Let E be a set equipped with an internal composition law
x and let e be a neutral element. We say that the element x of E has an inverse element

ZofBifVie E:xxax' =2 xx =e.
Example.

1. In R, the invertible elements for the multiplication law are the non-zero elements.

2. Let * be the law defined on R by: z %y =2 4+ y — 1. Then each x € R has an inverse

element '’ =2 — x, because rx 2’ =x+2' —1=1. Thus, 2/’ =2 — x.

Proposition 4.2 Let E be a set equipped with an associative internal composition law * that

has a neutral element.

1. The inverse element 2’ of = for the law * in E, if it exists, is unique.

2. If z,y € E are invertible, then x * y is invertible, and its inverse is given by
(xxy) =y =2

Definition 4.6 (Distributivity) Let E be a set equipped with two internal composition laws

xand T.
We say that x is left distributive with respect to T if

V(z,y,2) € E® :xx (yTz) = (x*y)T(z*2).
We say that * is right distributive with respect to T if

V(z,y,2) € E®: (aTy) x 2= (w % 2)T(y % 2).
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Remark 4.2 If the law x is commutative, then one of these properties implies the other.

Example
1. In N, Z, Q, R, and C, the multiplication law x is left distributive with respect to the
addition law +.
2. In P(E), the laws U and N are left distributive with respect to each other.

3. Let % be the law defined on R by z *y = x +y — zy, and let T be the law defined on
R by Ty = x +y — 1. Since the law * is commutative, it suffices to demonstrate

left distributivity with respect to T:

rx(yTz)=zx*x(z+y—1)
=2r+y+z—axy—xrz—1 ...... (1)
(xxy)T(rxz)=(x+y—ay)T(z+2—2x2)
=2r+y+z—axy—xz—1 ...... (2)

(1) =(2) So the law x is left distributive with respect to the law T.

4.2 Algebraic Structures

4.2.1 Groups

4.2.1.1 Definitions and Examples

Definition 4.7 (Group) A group is a non-empty set equipped with an internal composition

law (G, *) such that:

- * is associative;
- x has a neutral element e;

- every element in G is invertible (has an inverse) for .

Remark 4.3 If % is commutative, we say that (G, *) is commutative or abelian.
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Example

1. (Z,+), (Q,+), (R,+), and (C,+) are abelian groups;
2. The set P(E) equipped with the symmetric difference A is an abelian group;

3. (N, 4), (R, x), (P(E),N), and (P(E),U) are not groups.

Definition 4.8 (Subgroup) Let (G,*) be a group and let H be a non-empty subset of G.

We say that H is a subgroup of G if:

1. H is closed under x, i.e., for every (z,y) € H? x*xy € H;

2. H is closed under taking inverses, i.e., for every x € H, 2’ (the inverse of x) is also in

H.
Example

1. Let (G, x) be a group, then eg and G are subgroups (called trivial subgroups);

2. Let (Z,+) be a group. Then 3Z is a subgroup of Z, defined by
32={3z:2z€Z}={...,—6,-3,0,3,6,...}

3. Let (G,-) be a group. Then the set Z(G) = {z € G :Vy € G,zy = yx} is a subgroup

of G called the center of G.

Theorem 4.1 (Characterization of Subgroups) Let (G, *) be a group and let H be a non-

empty subset of G. Then H is a subgroup of GG if and only if

V(z,y) € H*,xxy € H

Proposition 4.3 (Intersection of Subgroups) Let (G, ) be a group and let {H,};cr be a

family of subgroups of G. Then N, H; is a subgroup of G.

Remark 4.4 The union of two subgroups of GG is not necessarily a subgroup of GG. For example,
27 and 37 are two subgroups of (Z,+), but their union is not a subgroup since 2 and 3

are in 2Z U 3Z while 2 +3 =5 ¢ 2Z U 3Z.
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4.2.1.2 Group Homomorphisms

Definition 4.9 Let (G4, %) and (G, L) be two groups. A group homomorphism (or simply

morphism) from G; to Gy is a function f : G; — G9 such that for all z,y € Gy,
flaxy) = f(z) L fy)

Example

f: R — R*
Let f be defined as . Then f is a homomorphism from (R, +) to

r — f(x)=2"
(R*, x) because

Vo,y €R, f(z+y) =27 =2"x 2/ = f(x) x f(y)

Remark 4.5 Let (Gy,*) and (Ga, L) be two groups and f be a homomorphism from G; to
(5. Then:

1. If f is bijective, then we say that f is an isomorphism;
2. If f is defined from (G1, *) to itself, then we say that f is an endomorphism;

3. If f is a bijective endomorphism, then we say that f is an automorphism.
Example

1. The exponential function is an isomorphism from the group (R, +) to (R%, x);

2. The natural logarithm function is an isomorphism from the group (R, x) to (R, +).

Proposition 4.4 Let (G1,*) and (Ga, L) be two groups with neutral elements e; and ey,

respectively, and let f be a homomorphism from G; to G5. Then:

1. f(€1> = €9.

2. Forall z € Gy, (f(x)) = f(2).

Proposition 4.5 Let (Gy,*) and (Gg, L) be two groups with neutral elements e; and ey,

respectively, and let f be a homomorphism from G; to G5. Then:
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1. If H is a subgroup of Gy, then f(H) is a subgroup of Go;

2. If H' is a subgroup of Gy, then f~!(H) is a subgroup of Gj.

Definition 4.10 (Kernel and Image of a Homomorphism) Let (Gy,*) and (G, L) be

two groups, and let f be a homomorphism from G; to G5. Then:

1. The kernel of f is defined as
Ker(f) = f(e) = {z € G1: f(2) = €2}
2. The image of f is defined as
Im(f) = f(G1) ={f(z) € G2:x € G}
Example Let f be the homomorphism given in Example 4.9. Then
Ker(f)={zeR: f(z)=1} ={r eR:2" =1} = {0}

and Im(f) = {f(z) : © € R}. We have f(z) = y, which implies 2* = y, and this implies

In *
rIn2=Iny, so z = 5. Hence, Im(f) =R3.

Theorem 4.2 Let f be a homomorphism from (G, %) to (Gg, L). Then:

1. Ker(f) is a subgroup of Gy;
2. Im(f) is a subgroup of Go;
3. f is injective if and only if Ker(f) = {e1};

4. f is surjective if and only if Im(f) = Gs.

4.2.1.3 Rings

Definition 4.11 (Ring) Let A be a set equipped with two binary operations, * and L.
(A, *, L) is called a ring if:

1. (A, %) is a commutative group;

2. 1 is associative;
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3. L is distributive over .
Remark 4.6

1. If L is commutative, then (A, *, 1) is called a commutative ring.

2. If 1 has a neutral element, then (A,*, 1) is called a unitary ring.
Example

1. (Z,+, x),(Q,+, x), (R, +, x) and (C, +, x) are commutative rings;
2. Let E be a set, (P(E),A,N) is a commutative ring;

3. Let A be the set of functions from C to C of the form z — az + fz. (A,+,0) is a

non-commutative ring.

Definition 4.12 (Subring) Let (A, +,:) be a ring and B be a subset of A. B is called a
subring of (A, +, ) if and only if:
1. B#0 (04 € B);
2. (B, +) is a subgroup of A;
3. B is closed under -.

Alternatively,

1. 0, € B
2. Foralla,be B,a—be B;

3. Foralla,be B, a-b € B.
Example

1. (Z,+, x),(Q,+, x), (R, +, x) and (C, +, x) are all subrings of each other;

2. The set {r +sv2: (r,s) € Q*} is a subring of (R, +, X).

Definition 4.13 (Ring Homomorphism) Let (A, +,-) and (B, +,-) be two rings. A func-

tion f from A to B is called a homomorphism if:

4.2. Algebraic Structures
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1. f(14) =1p
2. Forall a,b € A, f(a+b) = f(a)+ f(b);

3. Foralla,be A, f(a-b) = f(a)- f(b).
Remark 4.7 In particular, f is a group homomorphism from (A, +) to (A, +).

Definition 4.14 (Invertible Element) An element of a ring (A, +, -) is called invertible if it

has a symmetrical element for the second operation (if it has an inverse for the operation).

Definition 4.15 (Zero Divisor) A non-zero element z of a ring A is a zero divisor if its

product with another non-zero element equals zero:
Jy#0|zy=0 or yxr=0.

Example

1. In (Q,+,-), (R, +, "), and (C, +, ), all non-zero elements are invertible;

2. In the set of functions from R to R, any function f that vanishes is a zero divisor, and

the invertible elements are the functions that do not vanish.

4.2.1.4 Ideal in a Ring

Definition 4.16 (Ideal) Let (A,+,-) be a ring. A non-empty subset I of A is called an ideal
of A if and only if:

1. [ is a subgroup of (A, +,");

2. Forrelanda€ A,z-a€landa-z € 1.
Example The set Z is not an ideal of (R, +, x) because 1 € R and 3 € Z while £ ¢ Z.
Remark 4.8 It is easy to verify that:

1. The intersection of ideals of A is an ideal of A.
2. The image of an ideal under a surjective ring homomorphism is an ideal.

3. The kernel of a ring homomorphism is an ideal.
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4.2.1.5 Rules of Calculation in a Ring

Let us recall the binomial theorem, which extends from Z to commutative rings, but also to

arbitrary rings.

Proposition 4.6 Let (A, +,-) be aring, a,b € A with a-b="b-a, and n € N*. Then:
(a+0b)" Z Cra*pn=*.

Proof By induction on N and using the Pascal’s triangle.

Remark 4.9 Let 2,y € A and n € N*, then x — y | " — " and more precisely:
" — yn _ ($ _ y) Zxkyn—l—k‘

* A particular case of the above: if 1 — x is invertible, we can calculate ZZ;S 2* using

the formula:

n—1
l—z"=(1-2) E i
k=0

4.2.2 Fields

Definition 4.17 (Field) A field is a commutative ring in which every non-zero element is

invertible for the second operation.

Remark 4.10 If the second operation is also commutative, the field (K, +, ) is called a com-

mutative field.

Example

Q, R, and C are fields, but Z is not (2 is not invertible).

Definition 4.18 (Subfield) Let (K, +, ) be a field, a subfield of K is a subset K; of K such

that (K, +,-) is a field, i.e., for all z,y in K, we have z —y € K| and xy~! € Kj.
Example

1. (Q,+, x),(R,+, x), and (C, +, x) are all subfields of each other;
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2. The set Q[v2] = {a + bv/2 : a,b € Q} is a commutative field that contains Q as a

subfield.

4.3 Solved Exercises
Exercise 1. We define on R an internal composition law *x as follows:
‘v’a,bER:a*bzln(e“+eb)

1. Is the law * commutative? Associative? Does it have a neutral element?

2. Let a,b € R. We define an internal composition law L on R as follows:
Ve,ye R:x L y=ax+by
Determine a, b such that the law L is: (1) associative, (2) has a neutral element.
Exercise 2. Let G = R* x R and * be the internal composition law defined on G as follows:
V(z,y), (z",y) € G: (z,y) * (2,y) = (z2’, 2y +y)

1. Show that (G, x*) is a non-commutative group.

2. Show that the set H = R* x R is a subgroup of (G, *).

Exercise 3. Let (R’;, ><) and (R, +) be two groups, and let f : R* — R be the function

defined as follows:

f(x) = In(z)
1. Show that f is a homomorphism from (]R{”_;, x) to (R, +).
2. Calculate Ker(f). What can you conclude?

3. Is f surjective?
Exercice4. We equip the set A = Z? with two operations defined by:

(z,y) + (2,y) = (x+ 2",y +y) and (z,y) x (2',¢) = (z2’, 2y’ + 2'y)
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1. Show that (A, +) is a commutative group. (x)

2. Show that the operation x is commutative and associative.

3. Determine the neutral element for the operation *.

4. Show that (A, +,*) is a commutative unitary ring.

5. Show that B = {(a,0) | a € Z} is a subring of (A, +,*).

6. We equip the set K = R with the usual addition and multiplication.
(a) Why is (K, +,-) a field?
(b) Let L ={x € R, 30, € Q| x = a+ B3} be a subset of R.

Show that (L, +,.)isasubfieldof(K,+,.).
Exerciceb.

(1) Consider a set E defined by E = {(a,b) € R*: a # 0} and define on F a composition
law * by
V(a1,b1), (az,b2) € E: (a1,by) * (az,by) = (ajag, a1bs + by)
(a) Verify that * is an internal law on F and find (2,0) * (1, 1)
(b) Show that (F,x) is a non-commutative group.
(c) Determine the set H = {(x,y) € E,V(a,b) € E : (z,y) * (a,b) = (a,b) * (z,y)}
(2) Let F'={(a,b) € E:b=0} be a subset of E.
(a) Show that F'is a subgroup of E.
(3) Consider a function f defined by
f:(E,x) — (R*,.)
(a,b) — f((a,)) = a
(a) Show that f is a group homomorphism from (E, *) to the group (R*,.)
(b) Determine the kernel of f.
(4) Let Z[v/2] = {m + nv/2,m,n € Z} be a subset of R.
(a) Show that Z[v/2] equipped with addition and multiplication of real numbers is

a subring of R.
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4.3.1 Solutions

Exercise 1.

(1)

Va,b e R, bxa=In(e"+e*) =In (e +e") =axb.
Therefore, x is commutative.
Va,b,c €R, (a*b)xc In (e +e) =1In (e + e’ + €)

=ax(bxc).
Therefore, * is associative.

e axe=a<In(e"+e)=a< e =0.

Thus, there is no neutral element.
(2)

e | isassociative & Vz,y,z € R, (z Ly) Lz=a L (y L 2).
& Vr,y,2 € R, a’x + aby + bz = ax + aby + b*z.
Therefore, a? = a and ab = ba and b = b
Hence, (a=0ora=1)and (b=0o0r b=1).

e | has a neutral element e c Rif Ve e R, x Le=¢ L z=x.

&S Ve € R, ar + be = ae + bx = x.

Sag=1lande=0and b=1.

Exercise 2.

(1)
((@,y) = (@', 4)) * («",y") = (xa’, zy’ + y) * (2", ")
= (x2'2", 22"y + xy" +y) and
(@,y) = ((",¢) * (2",y")) = (@,y) = (2", 2"y" + ) = (za'a”, x2"y' + 2y" +y).
Thus, % is associative.

e (z,y) x(1,0) = (z,y) and (1,0) * (z,y) = (z,y).

Hence, (1,0) is the neutral element.
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o (x,y)* (%, _?y) = (1,0) and (%, —%) x (x,y) = (1,0).
Therefore, every element is symmetrizable. Thus, (G, *) is a group.
o (1,2)%(3,4) =(3,6) and (3,4) * (1,2) = (3, 10).
Therefore, the group is not commutative.
(2) H=R% xR is a subset of G.
e (1,0) € H,
o V(x,y),(2,y) € H, (z,y)* (z',y) € H since 2T > 0,
o V(z,y) € H, (z,y)' = (1,2) € H since 1 > 0.

Therefore, H is a subgroup of G.
Exercise 3.

(1) f is a homomorphism from (R*,-) to (R,+). Let:
T1,22 €RL : f(2-22) =In(xy-20) =Inz +Ina,
= [ (21) + [ (22)

(2)
ker(f) = {z e R} : f(z) =0}

=qqzecR :lnz=0

+
:{xeRi:eln(”):eozl}
:{xGRi:le}

= {1}

Thus, f is injective.

(3) f is surjective because:
Vy € R, 3z = € € RY such that f(z) = f(e¥) =In(e?) = y.

Exercise 4.

(1) (%)
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