Chapter 4

Algebraic Structures

4.1 Internal Composition Laws and Their Properties

4.1.1 Internal Composition Laws

Definition 4.1 Let E be a set. An internal composition law * on E is a mapping from $E \times E$ to E:

$$*: E \times E \longrightarrow E$$

$$(x,y) \mapsto x * y$$

Notations

- 1. Instead of "internal composition law," we also say "operation of internal composition" or simply "internal operation."
- 2. (E,*) is often used to denote a set E equipped with an internal operation *.

Example.

- 1. The laws \cup (union), \cap (intersection), and \triangle (symmetric difference) on $\mathcal{P}(E)$ (the power set of E).
- 2. The law (composition) on $\mathcal{F}(E)$ (the set of functions from E to E).

- **3.** The laws + and \times on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} .
- **4.** Let * be defined on \mathbb{R} by $x * y = \frac{1}{x+y}$. Then * is not an internal operation since (-1,1) does not have an image.
- **Definition 4.2 (Stable Subset for an Operation)** Let E be a set equipped with an internal composition law * and F be a subset of E. We say that F is stable under the law * if

$$\forall (x,y) \in F \times F : x * y \in F$$

Example.

- 1. \mathbb{R}^+ and \mathbb{R}^- are two stable subsets of \mathbb{R} under the operation +.
- **2.** For the operation \times , \mathbb{R}^+ is still a stable subset, but \mathbb{R}^- is not.

4.1.2 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an internal composition law *.

We say that * is commutative if $\forall (x,y) \in E^2 : x * y = y * x$.

We say that * is associative if $\forall (x, y, z) \in E^3 : (x * y) * z = x * (y * z)$.

Example.

- 1. The addition and multiplication laws on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} are commutative and associative.
- **2.** Also, the union (\cup) , intersection (\cap) , and symmetric difference (\triangle) laws on $\mathcal{P}(E)$ are commutative and associative.
- **3.** The composition law (\circ) on $\mathcal{F}(E)$ is associative but not commutative, because $f \circ g \neq g \circ f$ in general.
- **4.** Let * be the law defined on $\mathbb Q$ by: $x*y=\frac{x+y}{2}$. Then * is commutative, because $x*y=\frac{x+y}{2}=\frac{y+x}{2}=y*x$, but it is not associative,

because
$$(-1*0)*1 = \frac{1}{4} \neq -1*(0*1) = \frac{-1}{4}$$
.

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition law *. Let e be an element of E. We say that e is the neutral element for the law *, if

$$\forall x \in E : x * e = e * x = x$$

Remark 4.1 If the law * is commutative, the equality x * e = e * x is automatically satisfied.

Example.

- 1. In $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} , 0 is neutral for the addition law, and 1 is neutral for the multiplication law.
- **2.** In $\mathcal{P}(E)$, the empty set (\emptyset) is neutral for the union law (\cup) , and E is neutral for the intersection law (\cap) .
- **3.** Let * be the law defined on \mathbb{R} by: x * y = x + y 1. Then e = 1 is a neutral element, because $x * e = x \Rightarrow x + e 1 = x$. Thus, e = 1.
- Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the law * if it exists, is unique.
- **Proof.** Indeed, let e' be another neutral element for *, then e' = e' * e = e * e' = e. Thus, the neutral element is unique.
- **Definition 4.5 (Inverse Element)** Let E be a set equipped with an internal composition law * and let e be a neutral element. We say that the element x of E has an inverse element x' of E, if $\forall x \in E : x * x' = x' * x = e$.

Example.

- 1. In \mathbb{R} , the invertible elements for the multiplication law (\times) are the non-zero elements.
- **2.** Let * be the law defined on \mathbb{R} by: x*y=x+y-1. Then $x\in\mathbb{R}$ has an inverse element x'=2-x, because $x*x'=1\Rightarrow x+x'-1=1$. Thus, x'=2-x.

4.1.3 Properties of internal composition laws

Definition 4.3 (Commutativity and Associativity) Let E be a set equipped with an internal composition law *.

We say that * is commutative if $\forall (x,y) \in E^2 : x * y = y * x$.

We say that * is associative if $\forall (x, y, z) \in E^3 : (x * y) * z = x * (y * z)$.

Example.

- 1. The addition and multiplication laws on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} are commutative and associative.
- **2.** The union (\cup) , intersection (\cap) , and symmetric difference (\triangle) laws on $\mathcal{P}(E)$ are commutative and associative.
- **3.** The composition law (\circ) on $\mathcal{F}(E)$ is associative but not commutative, because $f \circ g \neq g \circ f$ in general.
- **4.** Let * be the law defined on \mathbb{Q} by: $x*y = \frac{x+y}{2}$. Then * is commutative, because $x*y = \frac{x+y}{2} = \frac{y+x}{2} = y*x$, but it is not associative, because $(-1*0)*1 = \frac{1}{4} \neq -1*(0*1) = \frac{-1}{4}$.

Definition 4.4 (Neutral Element) Let E be a set equipped with an internal composition law *. Let e be an element of E. We say that e is the neutral element for the law * if $\forall x \in E : x * e = e * x = x$.

Remark 4.1 If the law * is commutative, the equality x * e = e * x is automatically satisfied.

Example.

- 1. In \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , 0 is the neutral element for the addition law, and 1 is the neutral element for the multiplication law.
- **2.** In $\mathcal{P}(E)$, the empty set \emptyset is the neutral element for the union law \cup , and E is the neutral element for the intersection law \cap .

- **3.** Let * be the law defined on \mathbb{R} by: x*y=x+y-1. Then e=1 is a neutral element, because x*e=x+e-1=x. Thus, e=1.
- Proposition 4.1 (Uniqueness of the Neutral Element) The neutral element of E for the law *, if it exists, is unique.
- **Proof.** Indeed, let e' be another neutral element for *, then e' = e' * e = e * e' = e. Thus, the neutral element is unique.
- **Definition 4.5 (Inverse Element)** Let E be a set equipped with an internal composition law * and let e be a neutral element. We say that the element x of E has an inverse element x' of E if $\forall x \in E : x * x' = x' * x = e$.

Example.

- 1. In \mathbb{R} , the invertible elements for the multiplication law are the non-zero elements.
- **2.** Let * be the law defined on \mathbb{R} by: x * y = x + y 1. Then each $x \in \mathbb{R}$ has an inverse element x' = 2 x, because x * x' = x + x' 1 = 1. Thus, x' = 2 x.
- **Proposition 4.2** Let E be a set equipped with an associative internal composition law * that has a neutral element.
 - 1. The inverse element x' of x for the law * in E, if it exists, is unique.
 - 2. If $x, y \in E$ are invertible, then x * y is invertible, and its inverse is given by

$$(x*y)' = y'*x'$$

Definition 4.6 (Distributivity) Let E be a set equipped with two internal composition laws * and ⊤.

We say that * is left distributive with respect to \top if

$$\forall (x,y,z) \in E^3: x*(y\top z) = (x*y)\top (x*z).$$

We say that * is right distributive with respect to \top if

$$\forall (x, y, z) \in E^3 : (x \top y) * z = (x * z) \top (y * z).$$

Remark 4.2 If the law * is commutative, then one of these properties implies the other.

Example

- 1. In \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , the multiplication law \times is left distributive with respect to the addition law +.
- **2.** In $\mathcal{P}(E)$, the laws \cup and \cap are left distributive with respect to each other.
- 3. Let * be the law defined on \mathbb{R} by x * y = x + y xy, and let \top be the law defined on \mathbb{R} by $x \top y = x + y 1$. Since the law * is commutative, it suffices to demonstrate left distributivity with respect to \top :

4.2 Algebraic Structures

4.2.1 Groups

4.2.1.1 Definitions and Examples

Definition 4.7 (Group) A group is a non-empty set equipped with an internal composition law (G, *) such that:

- * is associative;
- * has a neutral element e;
- every element in G is invertible (has an inverse) for *.

Remark 4.3 If * is commutative, we say that (G, *) is commutative or abelian.

Example

- 1. $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are abelian groups;
- 2. The set $\mathcal{P}(E)$ equipped with the symmetric difference \triangle is an abelian group;
- **3.** $(\mathbb{N},+)$, (\mathbb{R},\times) , $(\mathcal{P}(E),\cap)$, and $(\mathcal{P}(E),\cup)$ are not groups.
- **Definition 4.8 (Subgroup)** Let (G, *) be a group and let H be a non-empty subset of G. We say that H is a subgroup of G if:
 - **1.** H is closed under *, i.e., for every $(x,y) \in H^2$, $x * y \in H$;
 - 2. H is closed under taking inverses, i.e., for every $x \in H$, x' (the inverse of x) is also in H.

Example

- 1. Let (G,*) be a group, then e_G and G are subgroups (called trivial subgroups);
- 2. Let $(\mathbb{Z},+)$ be a group. Then $3\mathbb{Z}$ is a subgroup of \mathbb{Z} , defined by

$$3\mathbb{Z} = \{3z : z \in \mathbb{Z}\} = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$$

- **3.** Let (G, \cdot) be a group. Then the set $Z(G) = \{x \in G : \forall y \in G, xy = yx\}$ is a subgroup of G called the center of G.
- Theorem 4.1 (Characterization of Subgroups) Let (G, *) be a group and let H be a non-empty subset of G. Then H is a subgroup of G if and only if

$$\forall (x,y) \in H^2, x * y' \in H$$

- **Proposition 4.3 (Intersection of Subgroups)** Let (G, *) be a group and let $\{H_i\}_{i \in I}$ be a family of subgroups of G. Then $\cap_{i \in I} H_i$ is a subgroup of G.
- **Remark 4.4** The union of two subgroups of G is not necessarily a subgroup of G. For example, $2\mathbb{Z}$ and $3\mathbb{Z}$ are two subgroups of $(\mathbb{Z}, +)$, but their union is not a subgroup since 2 and 3 are in $2\mathbb{Z} \cup 3\mathbb{Z}$ while $2+3=5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$.

4.2. Algebraic Structures

4.2.1.2 Group Homomorphisms

Definition 4.9 Let $(G_1, *)$ and (G_2, \bot) be two groups. A group homomorphism (or simply morphism) from G_1 to G_2 is a function $f: G_1 \longrightarrow G_2$ such that for all $x, y \in G_1$,

$$f(x * y) = f(x) \perp f(y)$$

Example

Let f be defined as $f: \mathbb{R} \longrightarrow \mathbb{R}^*$. Then f is a homomorphism from $(\mathbb{R},+)$ to $x \mapsto f(x) = 2^x$. (\mathbb{R}^*, \times) because

$$\forall x, y \in \mathbb{R}, f(x+y) = 2^{x+y} = 2^x \times 2^y = f(x) \times f(y)$$

Remark 4.5 Let $(G_1, *)$ and (G_2, \bot) be two groups and f be a homomorphism from G_1 to G_2 . Then:

- 1. If f is bijective, then we say that f is an isomorphism;
- 2. If f is defined from $(G_1, *)$ to itself, then we say that f is an endomorphism;
- 3. If f is a bijective endomorphism, then we say that f is an automorphism.

Example

- 1. The exponential function is an isomorphism from the group $(\mathbb{R}, +)$ to (\mathbb{R}_+^*, \times) ;
- **2.** The natural logarithm function is an isomorphism from the group (\mathbb{R}_+^*, \times) to $(\mathbb{R}, +)$.

Proposition 4.4 Let $(G_1, *)$ and (G_2, \perp) be two groups with neutral elements e_1 and e_2 , respectively, and let f be a homomorphism from G_1 to G_2 . Then:

- 1. $f(e_1) = e_2$;
- **2.** For all $x \in G_1$, (f(x))' = f(x').

Proposition 4.5 Let $(G_1, *)$ and (G_2, \bot) be two groups with neutral elements e_1 and e_2 , respectively, and let f be a homomorphism from G_1 to G_2 . Then:

- 1. If H is a subgroup of G_1 , then f(H) is a subgroup of G_2 ;
- **2.** If H' is a subgroup of G_2 , then $f^{-1}(H)$ is a subgroup of G_1 .

Definition 4.10 (Kernel and Image of a Homomorphism) Let $(G_1, *)$ and (G_2, \bot) be two groups, and let f be a homomorphism from G_1 to G_2 . Then:

1. The kernel of f is defined as

$$Ker(f) = f^{-1}(e) = \{x \in G_1 : f(x) = e_2\}$$

2. The image of f is defined as

$$Im(f) = f(G_1) = \{ f(x) \in G_2 : x \in G_1 \}$$

Example Let f be the homomorphism given in Example 4.9. Then

$$Ker(f) = \{x \in \mathbb{R} : f(x) = 1\} = \{x \in \mathbb{R} : 2^x = 1\} = \{0\}$$

and $\text{Im}(f) = \{f(x) : x \in \mathbb{R}\}$. We have f(x) = y, which implies $2^x = y$, and this implies $x \ln 2 = \ln y$, so $x = \frac{\ln y}{\ln 2}$. Hence, $\text{Im}(f) = \mathbb{R}_+^*$.

Theorem 4.2 Let f be a homomorphism from $(G_1, *)$ to (G_2, \bot) . Then:

- 1. Ker(f) is a subgroup of G_1 ;
- **2.** $\operatorname{Im}(f)$ is a subgroup of G_2 ;
- **3.** f is injective if and only if $Ker(f) = \{e_1\}$;
- **4.** f is surjective if and only if $Im(f) = G_2$.

4.2.1.3 Rings

Definition 4.11 (Ring) Let A be a set equipped with two binary operations, * and \bot . $(A, *, \bot)$ is called a ring if:

- 1. (A, *) is a commutative group;
- 2. \perp is associative;

4.2. Algebraic Structures

3. \perp is distributive over *.

Remark 4.6

- 1. If \perp is commutative, then $(A, *, \perp)$ is called a commutative ring.
- **2.** If \perp has a neutral element, then $(A, *, \perp)$ is called a unitary ring.

Example

- 1. $(\mathbb{Z},+,\times),(\mathbb{Q},+,\times),(\mathbb{R},+,\times)$ and $(\mathbb{C},+,\times)$ are commutative rings;
- **2.** Let E be a set, $(\mathcal{P}(E), \triangle, \cap)$ is a commutative ring;
- **3.** Let A be the set of functions from \mathbb{C} to \mathbb{C} of the form $z \mapsto \alpha z + \beta \overline{z}$. $(A, +, \circ)$ is a non-commutative ring.

Definition 4.12 (Subring) Let $(A, +, \cdot)$ be a ring and B be a subset of A. B is called a subring of $(A, +, \cdot)$ if and only if:

- 1. $B \neq \emptyset \ (0_A \in B);$
- **2.** (B, +) is a subgroup of A;
- **3.** B is closed under \cdot .

Alternatively,

- 1. $0_A \in B$
- **2.** For all $a, b \in B$, $a b \in B$;
- **3.** For all $a, b \in B$, $a \cdot b \in B$.

Example

- 1. $(\mathbb{Z},+,\times),(\mathbb{Q},+,\times),(\mathbb{R},+,\times)$ and $(\mathbb{C},+,\times)$ are all subrings of each other;
- **2.** The set $\{r + s\sqrt{2} : (r, s) \in \mathbb{Q}^2\}$ is a subring of $(\mathbb{R}, +, \times)$.

Definition 4.13 (Ring Homomorphism) Let $(A, +, \cdot)$ and $(B, +, \cdot)$ be two rings. A function f from A to B is called a homomorphism if:

- 1. $f(1_A) = 1_B$
- **2.** For all $a, b \in A$, f(a + b) = f(a) + f(b);
- **3.** For all $a, b \in A$, $f(a \cdot b) = f(a) \cdot f(b)$.

Remark 4.7 In particular, f is a group homomorphism from (A, +) to (A, +).

Definition 4.14 (Invertible Element) An element of a ring $(A, +, \cdot)$ is called invertible if it has a symmetrical element for the second operation (if it has an inverse for the operation).

Definition 4.15 (Zero Divisor) A non-zero element x of a ring A is a zero divisor if its product with another non-zero element equals zero:

$$\exists y \neq 0 \mid xy = 0 \quad \text{or} \quad yx = 0.$$

Example

- 1. In $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$, all non-zero elements are invertible;
- 2. In the set of functions from \mathbb{R} to \mathbb{R} , any function f that vanishes is a zero divisor, and the invertible elements are the functions that do not vanish.

4.2.1.4 Ideal in a Ring

Definition 4.16 (Ideal) Let $(A, +, \cdot)$ be a ring. A non-empty subset I of A is called an ideal of A if and only if:

- 1. I is a subgroup of $(A, +, \cdot)$;
- **2.** For $x \in I$ and $a \in A$, $x \cdot a \in I$ and $a \cdot x \in I$.

Example The set \mathbb{Z} is not an ideal of $(\mathbb{R}, +, \times)$ because $\frac{1}{5} \in \mathbb{R}$ and $3 \in \mathbb{Z}$ while $\frac{3}{5} \notin \mathbb{Z}$.

Remark 4.8 It is easy to verify that:

- 1. The intersection of ideals of A is an ideal of A.
- 2. The image of an ideal under a surjective ring homomorphism is an ideal.
- **3.** The kernel of a ring homomorphism is an ideal.

4.2.1.5 Rules of Calculation in a Ring

Let us recall the binomial theorem, which extends from \mathbb{Z} to commutative rings, but also to arbitrary rings.

Proposition 4.6 Let $(A, +, \cdot)$ be a ring, $a, b \in A$ with $a \cdot b = b \cdot a$, and $n \in \mathbb{N}^*$. Then:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}.$$

Proof By induction on \mathbb{N} and using the Pascal's triangle.

Remark 4.9 Let $x, y \in A$ and $n \in \mathbb{N}^*$, then $x - y \mid x^n - y^n$ and more precisely:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}.$$

* A particular case of the above: if 1-x is invertible, we can calculate $\sum_{k=0}^{n-1} x^k$ using the formula:

$$1 - x^{n} = (1 - x) \sum_{k=0}^{n-1} x^{k}.$$

4.2.2 Fields

Definition 4.17 (Field) A field is a commutative ring in which every non-zero element is invertible for the second operation.

Remark 4.10 If the second operation is also commutative, the field $(K, +, \cdot)$ is called a commutative field.

Example

 \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields, but \mathbb{Z} is not (2 is not invertible).

Definition 4.18 (Subfield) Let $(K, +, \cdot)$ be a field, a subfield of K is a subset K_1 of K such that $(K_1, +, \cdot)$ is a field, i.e., for all x, y in K_1 , we have $x - y \in K_1$ and $xy^{-1} \in K_1$.

Example

1. $(\mathbb{Q}, +, \times), (\mathbb{R}, +, \times),$ and $(\mathbb{C}, +, \times)$ are all subfields of each other;

4.2. Algebraic Structures

2. The set $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a commutative field that contains \mathbb{Q} as a subfield.

4.3 Solved Exercises

Exercise 1. We define on \mathbb{R} an internal composition law * as follows:

$$\forall a, b \in \mathbb{R} : a * b = \ln\left(e^a + e^b\right)$$

- 1. Is the law * commutative? Associative? Does it have a neutral element?
- **2.** Let $a, b \in \mathbb{R}$. We define an internal composition law \bot on \mathbb{R} as follows:

$$\forall x, y \in \mathbb{R} : x \perp y = ax + by$$

Determine a, b such that the law \perp is: (1) associative, (2) has a neutral element.

Exercise 2. Let $G = \mathbb{R}^* \times \mathbb{R}$ and * be the internal composition law defined on G as follows:

$$\forall (x,y), (x',y') \in G : (x,y) * (x',y') = (xx',xy'+y)$$

- 1. Show that (G,*) is a non-commutative group.
- **2.** Show that the set $H = \mathbb{R}_+^* \times \mathbb{R}$ is a subgroup of (G, *).

Exercise 3. Let (\mathbb{R}_+^*, \times) and $(\mathbb{R}, +)$ be two groups, and let $f : \mathbb{R}_+^* \longrightarrow \mathbb{R}$ be the function defined as follows:

$$f(x) = \ln(x)$$

- **1.** Show that f is a homomorphism from (\mathbb{R}_+^*, \times) to $(\mathbb{R}, +)$.
- **2.** Calculate Ker(f). What can you conclude?
- **3.** Is f surjective?

Exercice4. We equip the set $A = \mathbb{Z}^2$ with two operations defined by:

$$(x,y) + (x',y') = (x+x',y+y')$$
 and $(x,y) \star (x',y') = (xx',xy'+x'y)$

- 1. Show that (A, +) is a commutative group. (*)
- 2. Show that the operation \star is commutative and associative.
- 3. Determine the neutral element for the operation \star .
- **4.** Show that $(A, +, \star)$ is a commutative unitary ring.
- **5.** Show that $B = \{(a,0) \mid a \in \mathbb{Z}\}$ is a subring of $(A,+,\star)$.
- **6.** We equip the set $K = \mathbb{R}$ with the usual addition and multiplication.
 - (a) Why is $(K, +, \cdot)$ a field?
 - (b) Let $L = \{x \in \mathbb{R}, \exists \alpha, \beta \in \mathbb{Q} \mid x = \alpha + \beta \sqrt{3}\}$ be a subset of \mathbb{R} .

Show that (L, +, .) is a subfield of (K, +, .).

Exercice5.

(1) Consider a set E defined by $E = \{(a, b) \in \mathbb{R}^2 : a \neq 0\}$ and define on E a composition law * by

$$\forall (a_1, b_1), (a_2, b_2) \in E : (a_1, b_1) * (a_2, b_2) = (a_1 a_2, a_1 b_2 + b_1)$$

- (a) Verify that * is an internal law on E and find (2,0)*(1,1)
- (b) Show that (E, *) is a non-commutative group.
- (c) Determine the set $H = \{(x, y) \in E, \forall (a, b) \in E : (x, y) * (a, b) = (a, b) * (x, y)\}$
- (2) Let $F = \{(a, b) \in E : b = 0\}$ be a subset of E.
 - (a) Show that F is a subgroup of E.
- (3) Consider a function f defined by

$$f:(E,*)\longrightarrow (\mathbb{R}^*,.)$$

$$(a,b) \longmapsto f((a,b)) = a$$

- (a) Show that f is a group homomorphism from (E,*) to the group $(\mathbb{R}^*,.)$
- (b) Determine the kernel of f.
- (4) Let $\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2}, m, n \in \mathbb{Z}\}$ be a subset of \mathbb{R} .
 - (a) Show that $\mathbb{Z}[\sqrt{2}]$ equipped with addition and multiplication of real numbers is a subring of \mathbb{R} .

4.3.1 Solutions

Exercise 1.

(1)

- $\forall a, b \in \mathbb{R}, \ b * a = \ln(e^b + e^a) = \ln(e^a + e^b) = a * b.$ Therefore, * is commutative.
- $\forall a, b, c \in \mathbb{R}, (a * b) * c \quad \ln \left(e^{a * b} + e^c \right) = \ln \left(e^a + e^b + e^c \right)$ = a * (b * c).

Therefore, * is associative.

• $a * e = a \Leftrightarrow \ln(e^a + e^e) = a \Leftrightarrow e^e = 0.$ Thus, there is no neutral element.

(2)

- \bot is associative $\Leftrightarrow \forall x, y, z \in \mathbb{R}$, $(x \bot y) \bot z = x \bot (y \bot z)$. $\Leftrightarrow \forall x, y, z \in \mathbb{R}$, $a^2x + aby + bz = ax + aby + b^2z$. Therefore, $a^2 = a$ and ab = ba and $b = b^2$. Hence, (a = 0 or a = 1) and (b = 0 or b = 1).
- \bot has a neutral element $e \in \mathbb{R}$ if $\forall x \in \mathbb{R}$, $x \bot e = e \bot x = x$. $\Leftrightarrow \forall x \in \mathbb{R}, \ ax + be = ae + bx = x$. $\Leftrightarrow a = 1 \text{ and } e = 0 \text{ and } b = 1$.

Exercise 2.

(1)

$$((x,y)*(x',y'))*(x'',y'') = (xx',xy'+y)*(x'',y'')$$

$$= (xx'x'',xx''y'+xy''+y) \text{ and}$$

$$(x,y)*((x',y')*(x'',y'')) = (x,y)*(x'x'',x'y''+y') = (xx'x'',xx''y'+xy''+y).$$

Thus, * is associative.

• (x,y)*(1,0) = (x,y) and (1,0)*(x,y) = (x,y).

Hence, (1,0) is the neutral element.

•
$$(x,y)*(\frac{1}{x},\frac{-y}{x})=(1,0)$$
 and $(\frac{1}{x},-\frac{y}{x})*(x,y)=(1,0)$.

Therefore, every element is symmetrizable. Thus, (G, *) is a group.

•
$$(1,2)*(3,4) = (3,6)$$
 and $(3,4)*(1,2) = (3,10)$.

Therefore, the group is not commutative.

- (2) $H = \mathbb{R}_+^* \times \mathbb{R}$ is a subset of G.
 - $(1,0) \in H$,
 - $\forall (x, y), (x', y') \in H, (x, y) * (x', y') \in H \text{ since } x\bar{x} > 0,$
 - $\forall (x,y) \in H$, $(x,y)^{-1} = \left(\frac{1}{x}, \frac{-y}{x}\right) \in H$ since $\frac{1}{x} > 0$.

Therefore, H is a subgroup of G.

Exercise 3.

(1) f is a homomorphism from (\mathbb{R}_+^*, \cdot) to $(\mathbb{R}, +)$. Let:

$$x_1, x_2 \in \mathbb{R}_+^* : f(x_1 \cdot x_2) = \ln(x_1 \cdot x_2) = \ln x_1 + \ln x_2$$

= $f(x_1) + f(x_2)$

(2)

$$\ker(f) = \left\{ x \in \mathbb{R}_{+}^{*} : f(x) = 0 \right\}$$

$$= \left\{ x \in \mathbb{R}_{+}^{*} : \ln x = 0 \right\}$$

$$= \left\{ x \in \mathbb{R}_{+}^{*} : e^{\ln(x)} = e^{0} = 1 \right\}$$

$$= \left\{ x \in \mathbb{R}_{+}^{*} : x = 1 \right\}$$

$$= \left\{ 1 \right\}$$

Thus, f is injective.

(3) f is surjective because:

$$\forall y \in \mathbb{R}, \exists x = e^y \in \mathbb{R}_+^* \text{ such that } f(x) = f\left(e^y\right) = \ln\left(e^y\right) = y.$$

Exercise 4.

(1) (*)