Chapter 2

Logic and Lukasiewicz Trivalent Algebras

2.1 Lukasiewicz Trivalent Logic

2.1.1 Semantics

Lukasiewicz’s main work in mathematical logic was the creation of so-called "multivalent”
logics. He had the idea of assigning a status to the proposition ”it will rain tomorrow.”
In 1917, he outlined the first version of a trivalent logic, associating the third logical
value, different from true and false, with the notion of possibility. His first publications
on trivalent logic date back to 1920.

He used the following notations: 1 for true, 0 for false, and 1/2 for the third logi-
cal value, which can be interpreted as problematic or possible. Lukasiewicz defined his

trivalent logic semantically using the following connectors:

2.1.1.1 Negation

Denoted by N, defined by the table:

r | N)
0| 1
1/2 ] 1/2
1| 0

12
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Note that it is a decreasing involution in the set {0,1/2,1} naturally ordered. In

particular, we have the principle of double negation NNP = P.

2.1.1.2 Implication

Implication, denoted z — y: defined by the table

Ao 17201

0 1 1 |1

1/211/2] 1 |1

10 |[1/2]1

We observe that in the set T'= {0,1/2, 1} naturally ordered, z — y = 1 if and only if

rz <.

2.1.1.3 Disjunction

Lukasiewicz defined disjunction as:
zVy=(r—y)—v.

And the truth table is:

Ao (1201

0] 0 [1/2]1

12| 1/2 |1/2]1

rVy
In a Boolean algebra, we have:
(r = y) =y =1UTzVy) vy,
= (1(7z) Aly) Vy,
= (xATy) Vy,
= (zVy)A(lyVy),
=(xVy) AL,

(x =y) sy=xVuy.

2.1. Lukasiewicz Trivalent Logic
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2.1.1.4 Conjunction

This connector defined in Lukasiewicz’s trivalent logic as follows:
r ANy = N(NzV Ny).

Its truth table is:

Alol12] 1

1/2]0|1/2]1/2

1]o]1/2] 1

In a Boolean algebra, we have:

N(NzV Ny) = N(Nz) A N(Ny)

=z Avy.

2.1.1.5 Equivalence

Lukasiewicz’s equivalence in trivalent algebra is defined by:
rey=(r=>y Ay=r1).

Its truth table is:

Ao 1/2] 1

0| 1 |1/2] 0

1/21/2] 1 |1/2

1o [1/2] 1

2.1.1.6 Possibility

Lukasiewicz then tried to give a definition of the concept of possibility by attempting to
solve certain problems in modal logic. It was one of his students, Tarski, who in 1921
gave a unary possibility connector, which he denoted by u. The definition is as follows:

pr = Nx — x. And its truth table is:

2.1. Lukasiewicz Trivalent Logic
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x Tk
0 0
1/2 | 1
1 1
1%
Proof
x Nz | Ny —» x | px
0 1 0 0
1/2 1 1/2 1 1
1 0 1 1
2.1.1.7 Necessity denoted v
It is a unary connector defined by: vx = NuNx.
x dx
0 0
/210
1 1
Ux
Proof
x Nz | uNx | NuNx | dx
0 1 1 0 0
1/21/2] 1 0 0
1 0 0 1 1

2.1.1.8 Impossibility and Contingency

In Lukasiewicz’s trivalent calculus, we can define the impossibility (n) and contingency

() connectors:

2.1. Lukasiewicz Trivalent Logic
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nr = Nux.
yr = uNz.

Which gives the tables:

x N x Y
0 1 0 1
/210 1/2 11
1 0 1 0

2.1.1.9 Weak Implication

Monteiro introduced the weak implication, denoted by:

T —
Y

AV1001/201

1211 |1

1 |o]1/2]1

T —Y

Note that: * — y = v(z) V.
Lukasiewicz’s implication can be derived from weak implication:

:C—>y=(xﬂ—4>y)A(NyA—J>N:U).

2.1.2 Wajsberg’s Axiomatization (1931)

Wajsberg was the first in 1931 to provide an axiomatization of Lukasiewicz’s trivalent

logic using the following four axioms:
W1: 2z — (y — x).
W2: (z —y)— ((y— 2) = (z — 2)).

W3 : ((z - Nz) - 2) — x.

2.1. Lukasiewicz Trivalent Logic
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W4 : (Nz — Ny) = (y — x).

Note that all four axiom schemes are theses in classical propositional calculus denoted by

Lo.

2.2 Algebrization

2.2.1 Lukasiewicz Trivalent Algebra

2.2.1.1 Definition

In 1940, Moisil introduced the concept of Lukasiewicz trivalent algebra by giving a rather
complex axiomatization that can be stated as follows:

A system (L, V, A\, 0,1, N, u) formed by a non-empty set L, two elements 1 and 0 of L,
two binary operations A and V defined on L, and two unary operations N and u defined

on L, is a Lukasiewicz trivalent algebra if:
L,: (L,V,A,0,1) is a closed distributive lattice.
Ly : The unary operation N is a decreasing involution, i.e.:

e X <y= Ny < Nuz.

e NNz =z.
e N1 =0.
e NO=1.

L3 : The unary operation p is an endomorphism on L, idempotent, and extensive.
e Endomorphism: u(x Vy) = u(x) V uly).
p(x ANy) = p(x) A ply)

e Idempotent: pp(x) = u(x).

e Extensive: u(z) > z.

2.2. Algebrization
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Ly: NuNupx = px.
L;: Nz Vpur =1.
L¢:  ANx = px N Nx.

This algebra is denoted as t3-algebra.

2.2.1.2 Examples

1. T=1{0,1/2,1} is the smallest £3-algebra.

2. Let B be a Boolean algebra, B* = {(x,y)/x € B and y € B} is a Boolean algebra.
The set L(B) = {(z,y)/z < y} is a sublattice of B, equipped with the laws:

(1) (zy) Vv @y)=(@Vva yvy).

(2) (@ y) A y) = (A y Ay).

(3) N(z,y) = (Ty, Tx).

(4) nle,y) = (y.y)-

It is an L3 algebra because:

1. (0,0) € L(B) is the smallest element of L(B), and (1, 1) is the largest element of L(B),
so L(B) is closed.

2. L(B) is distributive because:
Let (z,y), («',y) . (2", y") € L(B)
(z, ) V(@' ) A" ")) = (z,y) V@@ A 2"y Ay
= (Vv (@' A2")y VY AY")
= ((zva)n(eva"), (yvy) Ay vy")
=@V yvy)A(zVva" yVvy")

= [(z,y) V (2", ¥ A (z,y) v (2", y")]

2.2. Algebrization
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Therefore
(@, y) VI y) A" y")] = [(z,y) Vv (& )] Al y) V(2" y")]
3. N is a decreasing involution because:
Assume that (x,y), (2/,y) € L(B)
Suppose (z,y) < (z',y), and we need to show that N (2/,y") < N(x,y)

We have (z,y) < (2/,¢y) = x < 2/

/

y=y

and as =,y € B, a Boolean algebra, so: 72’ < 7x

Ty < Ty
Therefore (7y/, 72") < (7y,7z), which means: N (z,y') < N(z,y)
So if (z,y) < (2',y) = N (',y') < N(x,y).
N(0,0) = (10,10) = (1, 1).
N(1,1) = (11,71) = (0,0).
NN(z,y) = N(Ty,7z) = (T7x,77Ty) = (z,y).

In the end, we get that /N is a decreasing involution.

4. p is an endomorphism:
p((z,y) V(@ y) =p(xva yvy)
=(yVy,yVvy)
=Wy V(y,y)
= p(z,y) vV p (2 y)
So: pu((z,y) vV (2, y") = pla,y) V (2. y).
plle,y) A y) = ple A,y ANy
p((@y) A y) = WAy, yny)
=y, ) A Y)

=z, y) Ap (2 y')

2.2. Algebrization
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So: pu((z,y) A (2, y")) = (e, y) A p (e, y).
5. p is idempotent:

We have: p(u(z,y)) = n(y, y) = (y,y) = pulz,y).

So 4 is idempotent.

6. p is extensive:
() = (y,v)
We have: (z,y) € L(B), so y > x and y > vy, then (y,y) > (z,y)
That is: pu(x,y) > (x,y).

So 41 is extensive.

7.
NuNp(z,y) = NuN(y, y)
= Nu(Ty,7y)
= N(Ty, Ty)
= (y,9)
= p(z,y).
So NuNu(z,y) = p(z,y).
8.

Ty, Tx) V (y,9)

N(z,y) vV p(z.y) =
= (TyVy,TxVy)
= (
= (

1,7z Vy)
Lz —=vy)

And since (z,y) € L(B), i.e,, z <y
And according to the property of implication: x — y = 1 if and only if z < y.

Therefore: z -y =1(Tx Vy =1)

2.2. Algebrization
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So: N(z,y)V p(z,y) = (1,7 Vy)
= (17I - y)

= (1,1).

Or 7o < Tx
r<y="Tr<Ty

=1<Trvy<1

=T7rVy=1
So N(z,y) V pu(z.y) = (1,1).

(z.y) AN(z,y) = (z,y) A(Ty, Tx)

= (z AN Ty,y \Tx)
We have: x <y=Ty<T7rand x <=z
So: z ATy <Oand z ATy >0=0<2 ATy <0then x A7y =0.

Therefore (z,y) A N(xz,y) = (z A Ty, yA\x)

= (0,yA]x)

i, y) AN(x,y) = (y,y) A (Ty, Tx)

= (yAly,yN]x)

= (0,yN]x).

Finally, we get: (2,y) A N(z,y) = p(z,y) A N(z,y).

2.2.1.3 Properties

1. The negation N satisfies De Morgan’s laws:
N(z Vy) = N(z) A N(y).
r<xVy N(z Vy) < N(x).

We have: =
y<zVy N(xVy) < N(y).

2.2. Algebrization
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= N@Vy <N@)ANY)oooieee (1)
Let z: @< Na) = e < N) =z Vy<N(z).
z < N(y) y < N(z)

= 2z< N(zVy).
And I(z) A N(y) < N(z).
N(z) AN(y) < N(y)

Therefore N(z) AN(y) < N(ZVY)eooiiroeannn, (2)

From (1) and (2) we obtain N(z Vy)= N(x) A N(y).

Also, N(z Ay) = N(x) V N(y).

We have Vo € L : N(z) > 0.

So N(1) > 0.everrnnne (1)

AndVzx e L: N(z) < 1.

x> N(l)and £ > 0. So: N(1) < 0ccveernrnnnne (2)

From (1) and (2): 0 < N(1) <0, so: N(1)=0.

3. u(l) = L.
We have Vo € L : u(x) >z, so: p(1) > 1.
And on the other hand: Vo € L: p(x) < 1 then (1) < 1.

(1) > 1 and p(l) < 1sou(l)=1.

4. p(0) = 0.
Vee L: X AN(z)=u(x)\NN(z).
So: 0 A N(0) = u(0) A N(0).
0A1=p(0)Al

0 = u(0).

2.2. Algebrization
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Therefore: 1(0) = 0.

5. Nu(z) < Nz < puN(x).

We have: Vo € L: p(z) > x.

And we have: Vo € Lz < p(x).
So for the element N(z): Nx < puN(Z).eeoovieveneannn.. (2)

From (1) and (2) we obtain: Nu(z) < Nz < uN(x).

6. NuN(z) <z < p(z).
Using property (5) we get:

We have:

Np(z) < Nz = N(N(z)) < N(Npu(z))

On the other hand: we have
N(z) < uN(x) = Nu(N(z)) < N(N(z)) |
= Np(N(2)) < ZTeevviee (2)

From (1) and (2) we find: NuN(z) <z < p(z).

7. ¥ and 7 are retracting, idempotent endomorphisms.

¥ = NuN

a. ¥ endomorphism:

Yz Vy) =NuN(xVy).

= Nu(Nz A Ny).

= N(uNz A pNy)(car p endomorphism ).

= NuN(x)V NuN(y).
Iz Vy) =d(x) Vi(y)

2.2. Algebrization
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Jd(xANy) = NuN(z ANvy).

= Nu(Nz VvV Ny).

= N(uNz V uNy).

= NuNxz N NuNy.

=dJx ANy

Therefore ¥ endomorphism.

b. 9 is a retraction:
vr = NuNz < x (according to property 6).

Yo < x, therefore 1 is a retraction.

c. ¥ is idempotent:

We have:

Yx = NuN(NuNzx).
= NuNN(uNzx)
= Nup(Nz)
= NuNzx

=Yz

Therefore 1 is idempotent.

8. n and v satisfying De Morgan’s laws, called dualities.
n(zVy) =nzAnyand gz Ay) =nzVny.

Y(xVy) =~z Ayy and v(z Ay) = vz V Y.

The six operators I, N, 4, n,~ form a monoid with the following table:

2.2. Algebrization
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v

v

=z |~
=
~
3
)
=

v

Pl |y e dnly
nlu|dnly
nin|d|n|y|p|v
Yl ||yl

This monoid is generated by N and any of u, 9, n, .

10. Lj is equivalent to:

a. rVyr=1.
b. nx VvV ur = 1.
c. JxVyr=1

d. prVv~yr=1.

Proof Recall that Ly : Nz V ur = 1.
(Ls) = (1).
We assume that: NaxV pz = 1. ie., L
Replace x with Nz, we get:
Nz V pzr = NNzxV uNzx = 1.
—axVyr=1
So (Ls) = (1).
(1) = (Ls)
We assume that: zVyz = 1.
Replacing x with Nux:

Nz V~yNx =1= Nz V ux = 1.

2.2. Algebrization
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So (L) < (1).

(1) = (2).

We assume that: x V vz = 1.

Replacing x with pa:

zVyr=1.

= px V yuxr =1 (according to property (9), yu =)

= pxr Vnr = 1.

Suppose:
nr vV pr = 1.

Replacing x with Nz
nrVur =nNzV uNx.

=dxVyx

=1.

Suppose: vx V yr = 1.
We have Vx € L : dz < x.
So vx Vyr <x V.
That is 1 <z V ~yz.
SoxzV~yr=1.

Then (3) = (1)

(Ls) = (4).

We assume that: Nz V pxr = 1.

2.2. Algebrization
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We have Vo € L : Nz < uNx (according to property (5)).
Nx <~z

So Nz V px < px V yx.

= 1< pux V.

= puxVyr = 1.

We assume that: pz Vyr = 1.

Replaced = with px.
pr N yr = ppx N yus
= px Vnr
=1
So (4) = (2).

11. Lj is equivalent to:

a. nt ANx=0.

b. Nx ANdz =0
c. Nx Anx =0
d. yve Adx =0

e. tANVzr =0
12. Lg is equivalent to:

a. t ANz =2x A ~vyzx.
b. 2V Nz =z Vnz.

c. tV Nz =puxV Nzx.

13. px AN Nx =x A .

xVnr= NzxVir.

2.2. Algebrization
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2.2.1.4 Fundamental Properties

Nz =nzV (z Ayzx)
Proof: Let’s assume that:

r < pux hence x A ux = .

zVO0=uzxV(uzAn)
= (z A px) V (px A nr)
= px A (x Vnx)
And we have: x = px A (N2 VU)o (%)
So:
Nz = Npx VvV (NNz A Nvx)
=nz V (z Ayz) .

Moisil’s Determination Principle:

pr = iy
=r=y
Jr =y

Proof: Let’s assume that:

pr = py and Jr = Jy.
From (x):

zVy=pxVy) A(N@Vy VizVy))

= (pz V uy) A (Nz A Ny V dx V dy).

zVy=pxA(NxViy)ApuxA(NyViy).

So:xVy=1xAuy.
rANy<z<zVy.
zVy<z<zxVy.
—czVy=z ButzVy=y.

— T =Y.

2.2. Algebrization
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2.2.1.5 Second Axiomatization of f; - Algebras

The 1%¢ axiomatization of Moisil, consisting of the set of axioms L; to Lg, is equivalent to
the following:

A fs-algebra is a structure (L, A, V,0, 1, u, ) such that:

Ly :(L,A,V,0,1) is a closed distributive lattice.

L, : i, are endomorphisms conserving 0 and 1.

Ly =9,9u = p.

L9 <p.

Lg:plz) = p(y),d(z) =d(y) =z =y.

Lg : p, and 9 are chrysipians: u,9 : L — CL, where C(L) = { the complements of

L}.

2.2.1.6 Equivalence of the Two Axiomatizations of {3 Algebras

The proof of the equivalence between the two axiomatizations is left to the reader as an

exercise.

2.3 Tutorial 1 : Algebraic Logic

The purpose of this problem is to obtain representation theorems for Ls-algebras (Lukasiewicz’s

trivalent algebras).

I - Preliminary on Lattices

Consider a distributive and closed lattice L (with 0 and 1). Let C'(L) denote the Boolean
sublattice of complemented (or chrysippean) elements of L. If x € C'(L), we denote its

complement by z’.

1. Let a be a fixed element of L. Define the binary relation in L, denoted z = y(a), by:

aNT=aly.

2.3. Tutorial 1 : Algebraic Logic
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Show that this is an equivalence relation compatible with the laws A and V. We

can define the quotient lattice, denoted by L/a.

2. Now, fix a € C(L). For any element x in L, denote by 7 its class in L/a and 7 its class
in L/a.
Show that the mapping 0 defined by 0(z) = (Z, ) is an isomorphism from the lattice

L to the product lattice L/a x L/a.

IT - Supplementary on L3 Algebras

Let (L,A,V,1,0,N,u) be an Es-algebra (in the sense of Moisil’s first definition). As
usual, define the other modalities 7, v,v. Also, define two new operators ¢ and 7 by:
or =wvx Vnx, Tx = px A yx. Finally, introduce the following definitions:

An element x of L is said to be possible if uz = 1.

An element x of L is said to be contingent if vz = 1.

An element x of L is said to be a center if it is both possible and contingent.
1. a) Show that for all z € L, x V Nz is possible.

b) Show that for all x € L, x A Nx is contingent.

c) Show that if there exists a center, it is unique (in this case, it is called a centered

E;_ algebra).
d) Show that z is a center if and only if x = Nzx.

2. Let a € C(L). Show that the equivalence relation defined in I- 1° is compatible with

N and p. This allows us to define a structure of ¥3-algebra on L/a.

3. Using the classical component-wise definition, show that the product of two Lz-algebras
is also an Ls-algebra (a result that can be considered evident). Show that the
mapping 6 defined in I — 2° is then an ¢3-isomorphism.

4. a) Show that an element x of L is chrysippean if and only if 7z = 0.

b) Show that an element = of L is the center if and only if oz = 0.

2.3. Tutorial 1 : Algebraic Logic
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c¢) Show that for any element a of L, L is isomorphic (in terms of Ls-algebras) to

L/oa x L/ta.

5. Let L be an Ez-algebra with a center w, and all other elements being chrysippean.

Show that L is isomorphic to the chain 7" = {0,1/2,1}.

Hint: If v € L and = # w, distinguish the two cases: z Aw = w or z A w is

chrysippean.

IIT - Representation Theorems for Finite [.3-Algebras

Show that any finite Ez-algebra L is isomorphic to a finite product U? x T? (p > 0,q > 0),
where U = {0,1},7 = {0,1/2,1}.

Hint: If possible, choose an element a in L that is neither chrysippean nor the potential
center, and use 1I- 3°.

Note: It follows that card(L) = 27 x 3.

IV - Boolean Representation

1. Let B be a Boolean algebra, and construct the Boolean product algebra B2. If x € B,

denote its Boolean complement by z’. Define: L(B) = {(z,y) € B*/z < y}.

a) Show that L(B) is a sublattice of the lattice B2

b) Show that L(B) is an Ls-algebra (in the sense of Moisil’s first definition) by

N(z,y) =y, 2)
defining the operators:

wz,y) = (y,y)

2. a) Conversely, let L be an arbitrary Es-algebra. Show that the mapping
1. ¢ defined by:
ifrel ¢r)=(vr,px)
is an Lz - monomorphism from L into L(C(L)).

b) Show that ¢ is an isomorphism if and only if L is an Ls-algebra.

2.3. Tutorial 1 : Algebraic Logic
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Generalities on fuzzy sets

This chapter reviews the concepts and notations of sets, and then introduces the concepts

of fuzzy sets. The concept of fuzzy sets is a generalisation of the crisp sets.

3.1 Crisp sets

Before starting the definition of fuzzy subset, we first take care of the classical set and its
properties.

The concept of a set is one of the most fundamental in mathematics. Developed at
the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can

be used as a foundation from which nearly all of mathematics can be derived.

Etymology: The German word Menge, rendered as "set” in English, was coined by

Bernard Bolzano in his work The Paradoxes of the Infinite.

Definition 1 A set is a well-defined collection of distinct objects. The objects that make
up a set (also known as the set’s elements or members) can be anything: numbers,
people, letters of the alphabet, other sets, and so on. Georg Cantor, one of the

founders of set theory.

A set can be written:

In extension: We give the list of its elements. For example, if aq,as,as, ..., a, are the

32
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elements of set A, we write:

A= {a17a27a’37"'7an}

In understanding: We give the property or properties that characterize its elements.
For example, if the elements of the set B satisfying the conditions Py, Ps, Ps, ..., P,

then the set B is defined by:
B = {b/b satisfied Py, P, Ps,...,P,}

In Characteristic Function: A classical subset A of X is defined by a

characteristic function x4

Xa: X — {0,1}
xr — xa(x)

Notation

o A= {(z,xa(x)),z € X} is crisp set

o P(X)={xa/AC X}
Example (finite case)

1- The set F' of the twenty smallest integers that are four less than perfect squares

can be written:
F = {n2 — 4 :nis an integer, and 0 < n < 19}
2- A is the set whose members are the first four positive integers.

Definition 2 (power set) The power set of a set S is the set of all subsets of S, including

S itself and the empty set.
Remark

1. The power set of a set S usually written as P(S).

2. The power set of a finite set with n elements has 2" elements.

3.1. Crisp sets
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3. The power set of an infinite (either countable or uncountable) set is always

uncountable.

Example

1. The power set of the set {1, 2,3} is {{1, 2,3}, {1,2},{1, 3}, {2,3}, {1}, {2}, {3}, ¢}.
2. The set {1, 2, 3} contains three elements, and the power set shown above contains

23 = 8 elements.

Definition 3 (cardinality) The cardinality |S| of a set S is”the number of members of

S For example, if B = { blue, white, red }, |B| = 3.

There is a unique set with no members and zero cardinality, which is called the

empty set (or the null set).

The concept of the fuzzy subset was introduced by Zadeh [19] as a generalization of the

notion of the classical set.

3.2 Basic concepts of fuzzy sets

3.2.1 Membership functions

Definition 4 A fuzzy set A is characterized by a generalized characteristic function g, :
X — [0,1], called the membership function of A and defined over a universe of

discourse X.

Remark

na X — [0 1]
r — pa(z)
e /i, is called the membership function of A

e a(x) is called the membership degree of z in A

Notation

3.2. Basic concepts of fuzzy sets
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Figure 3.1: A membership function for ”Young”

o A= {(z,pa(x)),r € X} is fuzzy set by convention

l’.
A= Z L(Z) in the discrete case
reX Li

T
A= / MA—() in the continues case
T

e F(X) is the set of all fuzzy subsets of X

Example X = { motorbike, car, train } means of transport, A: subset of X, the means

of fast transport A = {( motorbike, 0.7), ( car, 0.5), ( train, 1)}

Example Let X the set of all possible ages of people.

1 if <25

Y(z)=4q 0= it 95< <40

0 if 40<z

Y (x) is the degree of belonging of x to the set young people

Example Let’s define a fuzzy set A = { real number very near 0} can be defined and its

Halz) = <1+1x2>2

It is easy to calculate pa(1) = 0.25, ua(2) = 0.04, na(3) = 0.01

membership function is

3.2. Basic concepts of fuzzy sets



