Chapter

Generalities on fuzzy sets

This chapter reviews the concepts and notations of sets, and then introduces the concepts

of fuzzy sets. The concept of fuzzy sets is a generalisation of the crisp sets.

3.1 Crisp sets

Before starting the definition of fuzzy subset, we first take care of the classical set and its
properties.

The concept of a set is one of the most fundamental in mathematics. Developed at
the end of the 19th century, set theory is now a ubiquitous part of mathematics, and can

be used as a foundation from which nearly all of mathematics can be derived.

Etymology: The German word Menge, rendered as "set” in English, was coined by

Bernard Bolzano in his work The Paradoxes of the Infinite.

Definition 1 A set is a well-defined collection of distinct objects. The objects that make
up a set (also known as the set’s elements or members) can be anything: numbers,
people, letters of the alphabet, other sets, and so on. Georg Cantor, one of the

founders of set theory.

A set can be written:

In extension: We give the list of its elements. For example, if aq,as,as, ..., a, are the
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elements of set A, we write:

A= {a17a27a’37"'7an}

In understanding: We give the property or properties that characterize its elements.
For example, if the elements of the set B satisfying the conditions Py, Ps, Ps, ..., P,

then the set B is defined by:
B = {b/b satisfied Py, P, Ps,...,P,}

In Characteristic Function: A classical subset A of X is defined by a

characteristic function x4

Xa: X — {0,1}
xr — xa(x)

Notation

o A= {(z,xa(x)),z € X} is crisp set

o P(X)={xa/AC X}
Example (finite case)

1- The set F' of the twenty smallest integers that are four less than perfect squares

can be written:
F = {n2 — 4 :nis an integer, and 0 < n < 19}
2- A is the set whose members are the first four positive integers.

Definition 2 (power set) The power set of a set S is the set of all subsets of S, including

S itself and the empty set.
Remark

1. The power set of a set S usually written as P(S).

2. The power set of a finite set with n elements has 2" elements.

3.1. Crisp sets
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3. The power set of an infinite (either countable or uncountable) set is always

uncountable.

Example

1. The power set of the set {1, 2,3} is {{1, 2,3}, {1,2},{1, 3}, {2,3}, {1}, {2}, {3}, ¢}.
2. The set {1, 2, 3} contains three elements, and the power set shown above contains

23 = 8 elements.

Definition 3 (cardinality) The cardinality |S| of a set S is”the number of members of

S For example, if B = { blue, white, red }, |B| = 3.

There is a unique set with no members and zero cardinality, which is called the

empty set (or the null set).

The concept of the fuzzy subset was introduced by Zadeh [19] as a generalization of the

notion of the classical set.

3.2 Basic concepts of fuzzy sets

3.2.1 Membership functions

Definition 4 A fuzzy set A is characterized by a generalized characteristic function g, :
X — [0,1], called the membership function of A and defined over a universe of

discourse X.

Remark

na X — [0 1]
r — pa(z)
e /i, is called the membership function of A

e a(x) is called the membership degree of z in A

Notation

3.2. Basic concepts of fuzzy sets
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20 40 60 80 100
Figure 3.1: A membership function for ”Young”

o A= {(z,pa(x)),r € X} is fuzzy set by convention

l’.
A= Z L(Z) in the discrete case
reX Li

T
A= / MA—() in the continues case
T

e F(X) is the set of all fuzzy subsets of X

Example X = { motorbike, car, train } means of transport, A: subset of X, the means

of fast transport A = {( motorbike, 0.7), ( car, 0.5), ( train, 1)}

Example Let X the set of all possible ages of people.

1 if <25

Y(z)=4q 0= it 95< <40

0 if 40<z

Y (x) is the degree of belonging of x to the set young people

Example Let’s define a fuzzy set A = { real number very near 0} can be defined and its

Halz) = <1+1x2>2

It is easy to calculate pa(1) = 0.25, ua(2) = 0.04, na(3) = 0.01

membership function is

3.2. Basic concepts of fuzzy sets
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Example Consider a universal set X which is defined on the age domain.

X = {5,15,25,35,45,55,65,75,85}, and g : X — [0, 1] the membership function

given by

Age | Infant | Young | Adult | Senior
5 0.00 0.00 0.00 0.00
15 | 0.00 0.20 0.10 0.00
25 | 0.00 1.00 0.90 0.00
35 | 0.00 0.80 1.00 0.00
45 | 0.00 0.40 1.00 0.10
55 | 0.00 0.10 1.00 0.20
65 | 0.00 0.00 1.00 0.60
75 | 0.00 0.00 1.00 1.00
85 | 0.00 0.00 1.00 1.00

3.3 Fuzzy sets operations

3.3.1 Standard Operations

Let F(x) denote the collection of all fuzzy sets on a given universe of discourse X.

The basic connectives in fuzzy set theory are inclusion, union, intersection, and com-

plementation. When Zadeh introduced these operations, he based union and intersection

connectives on the max and min operations.

e Inclusion: Let A, B € F(X). We say that the set A is included in B if

A(z) < B(z),Vr € X

The empty (fuzzy) set @) is defined as (z) = 0,Vx € X, and the total set x is

X(z)=1VreX.

e Intersection: Let A, B € F(X). The intersection of A and B is the fuzzy set C' with

C(z) = min{A(z), B(z)} = A(z) A B(z),Vo € X

3.3. Fuzzy sets operations
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We denote C = A A B.

e Union: Let A, B € F(X). The union of A and B is the fuzzy set D with
D(x) = max{A(z), B(z)} = A(z) V B(z),Vzr € X
We denote D = AV B.

e Complementation: Let A € F(X) be a fuzzy set. The complement of A is the fuzzy
set B given by

B(z)=1- A(x),Vr € X.
We denote B = A.
Example If we consider the fuzzy sets

1 it 40 <2 <50

Ai(z) =< 1—2=50 §f 50< 7z <60

\ 0 if 60 <2<100
0 if 40 <2 <50
250 if 50 <2 <60
AQ(T) =
1—280 if 60 <2 <70
\ 0 if 70 <2 <100
then their union is
1 if 40 <z < 50

1 -39 if 50<x<55

(A1 V Ay) () = ¢ =50 if 55<x<60

1—250 §if 60<2<70

0 it 70 <2 <100

The intersection can be expressed as

0 it 40 <z <50

250 it 50 <x<bHd

(A] A Ay) (z) = 10

0 it 60 <z <100

3.3. Fuzzy sets operations
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Figure 3.3: Fuzzy Union

The complement of A; can be written

0 it 40 <z <50

A(z) =4 =50 if 50< 2 <60

1 if 60 <xz<100

3.3. Fuzzy sets operations
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Figure 3.4: The complement of a fuzzy set

3.3.2 Fuzzy complement

Complement set A of set A carries the sense of negation. Complement set may be defined
by the following function C.

C:[0,1] — [0,1]

Definition 5 The complement function C'is designed to map membership function p(x)
of fuzzy set A to [0, 1] and the mapped value is written as C (ua(z)). To be a fuzzy

complement function, four axioms should be satisfied.
(Axiom C1) C(0) =1,C(1) = 0 (boundary condition)
(Axiom C2) (monotonic nonicreasing), a,b € [0, 1]

if a < b, then C(a) > C(b)

(Axiom C3) C is a continuous function.

(Axiom C4) C is involutive.

C(C(a)) =afor all a € [0,1]

3.3. Fuzzy sets operations
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Figure 3.5: Standard complement set function

Remark C'1 and C2 are fundamental requisites to be a complement function. These two

axioms are called "axiomatic skeleton”.

Example of Complement Function
Above four axioms hold in standard complement operator

C(pa(x)) =1 —palx) or  pz(r)=1-pa(r)
this standard function is shown in (Figure (1.5))

Proposition 1 The function defined by

g =

Cula) = (1 —a")
is a negation, called Yager’s function.
Proof

1. Cu(0) =1,Cu(1) =0. (boundary condition )

2. a,b€]0,1] if a < b, then
a’ <b=1—a">1-0b"
> (=) > (1 -))

= Cy(a) > Cy(b)

3.3. Fuzzy sets operations
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Figure 3.6: Yager complement function

3. C involutive

gl

Cw (Cu(a))

(0=
[(1 —a¥
(1—a"))

(a™) " (monotonic nonicreasing)

&=

~—
gl

)

g =

C
(1
(1

4. C is a continuous function.

The shape of the function is dependent on the parameter (Figure(1.6))

Remark

(i) When w = 1, the Yager’s function becomes the standard complement function
cla)=1-a.
(ii) The fuzzy complement function C' is not unique see Figure(1.6)

Proposition 2 (Fundamental properties of fuzzy sets operations) Let A, B,C € F(X),

we have the following propriety:

3.3. Fuzzy sets operations
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Involution A=A
Commutativity AUB=BUAANB=BNA
(AUB)UC =AU (BUC) and
Associativity
(AnNB)NC=An(BNQC)
AN(BUC)=(ANB)U(ANC)
Distributivity
AU(BNC)=(AUuB)N(AUC)
Absorption AUANB)=AAN(AuB)=A
[dempotence AUA=AANA=A
Absorption by X and () AxX =X ANnD=10
Identity Audh=A
Law of contradiction ANA=10
Law of excluded middle AUA=X
De Morgan’s laws ANB=AUBand AUB=ANB

Remark The two principles of classical logic (the non contradiction and the excluded

teirs) no longer remains valid in the theory of fuzzy setsi.e. ANA# 0, AUA # X.

Example let X = { smal, medium, large } with ps = (z,pa(z)) = {( smal, 0.3),(
medium, 1), ( large, 0.6)}. pi(x) =1—pa(z) = {( smal, 0.7), ( medium, 0), ( small,

0.4)}. Hence, pua Npg = {( smal, 0.3), ( medium, 0), ( large, 0.4)}.

then, ANA#(, and AU A # X. So, min and max is not checked.

Fuzzy partition

Let A be a crisp set in universal set X and A be a complement set of A. The conditions

A # 0 and A # X result in couple the (A, A) which decomposes X into 2 subsets.

Definition 6 (Fuzzy partition) In the same manner, consider a fuzzy set satisfying A # ()
and A # X. The pair (A, A) is defined as fuzzy partition. Usually, if m subsets are
defined in X, m-tuple (A, As, A, ..., A,) holding the following conditions is called

a fuzzy partition.

3.3. Fuzzy sets operations
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() Vi, A;#0
(ii) A, NA; =0 for i # j,

(iii) Vee X, >, pa(z)=1

3.3.3 Characteristics of fuzzy subsets

In this section, we will give definitions for characteristics of fuzzy sets : support, kernel,

height and cardinality of a fuzzy subset, and we will give an example and proposition.

Definition 7 (Support of fuzzy subset) Let A be a fuzzy set on a set X. The support of

A is the crisp subset on X given by

Supp(A) = {z € X/pa(z) > 0}

Definition 8 (Kernel of a fuzzy subset)Let A be a fuzzy set on a set X. The kernel of

A is the crisp subset on X given by

Ker(A) ={z € X/ua(z) =1}

Definition 9 (Height of fuzzy subset) Let A be a fuzzy set on a set X. The height of A

is the highest value taken by its membership function

given by

H(A) = sup {pa(z)/z € X}
Definition 10 A fuzzy subset A is said to be normal whenever Ht(A) = 1.

Definition 11 (Cardinality of a fuzzy subset)The cardinality of a finite fuzzy subset A

denoted |A] is defined by

Al = Z fra(x)

zeX

3.3. Fuzzy sets operations
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Example Let X = [0,1] with o, 5 € R and let a,b € R. We define the fuzzy set A on X
by
0,ifr<a—aorb+p<zx
1, ifa<z<b

1+(u), if a—a<zxr<a

[e%

1—(’%), if b<z<b4p
Then Ker(A) = [0,1],Supp(A) = [a — a,b+ f] and H(A) = 1.

Example Let X = {1,2,...,6}, and A be a fuzzy set of X given by:
A= {{z,pa(x))} = {(1,0.2),(2,0.0), (3,0.8), (4,1.0), (5,0.5), (6, 1.0) }.
Then supp(A) = {1,3,4,5,6}, Ker(A) = {4,6}, H(A) = {1}, |A| = 3.5.

Proposition 4 Let A a fuzzy subset of X. The kernel and support of a fuzzy subset

verify the following properties:
supp (A°) = (ker(4))°

ker (A°) = (supp(A))°
3.3.4 Other fuzzy subset operations

Disjunctive sum

The disjunctive sum is the name of operation corresponding “exclusive OR” logic. And

it is expressed as the following((Figure (1.7))

A®B=(ANB)U(ANB)

Definition 12 (Simple disjunctive sum)By means of fuzzy union and fuzzy intersection,
the definition of the disjunctive sum in a fuzzy set is allowed just like in the crisp

set.
A®B=(ANB)U (AN B), then

paes(r) = Max {Min [pa(x), 1 — pp(2)], Min [1 — pa(z), ps(2)]}

3.3. Fuzzy sets operations
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Figure 3.7: Disjunctive sum of two sets

Example Here goes procedures obtaining disjunctive sum of A and B.
A= {(21,0.2),(22,0.7), (x3,1), (74,0)}
B ={(x1,0.5), (22,0.3), (z3,1), (24,0.1)}
consequence,

A®B=(ANB)U(ANB) = {(21,0.5), (2,0.7), (23,0), (14,0.1)}

Definition 13 (Disjoint sum) We can define an operator A for the exclusive OR disjoint

sum as follows.

pans(r) = |pa(x) — pp(x)|

Difference in Fuzzy Set

The difference in crisp set is defined by

A—B=ANB

In a fuzzy set, there are two means of obtaining the difference

(1) Simple difference

Example By using standard complement and intersection operations, the difference op-
eration would be simple. If we reconsider the previews example, A — B would

be,(Figure(1.9))

3.3. Fuzzy sets operations
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Figure 3.8: Example of simple disjunctive sum

A={(21,0.2) . (22,0.7), (23,1), (24,0)}
B ={(x1,0.5), (72,0.3), (r3,1), (24,0.1)}
B = {(11,0.5), (15,0.7), (x3,0), (74,0.9)}

A—B=ANB={(21,0.2),(22,0.7), (23,0), (24,0)}

(2) Bounded difference

Definition 14 (Bounded difference) For novice-operator 6, we define the membership

function as,

praop(r) = Max [0, pa(r) — pp(7)]

Distance in Fuzzy Set

The concept 'distance’ is designated to describe the difference. Measures for distance are

defined in the following.

(1) Hamming distance

3.3. Fuzzy sets operations
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Figure 3.9: Simple difference A — B
This concept is marked as,
AAB) = 3 fua (22) — pus (1)
=0
Example Following A and B for instance,
A={(x1,04),(22,0.8), (x3,1), (x4;0)}

B = {(21,0.4),(x2,0.3), (3,0), (24;0)}

d(A,B) = [0+ ]0.5| + [1] + |0] = 1.5

Remark Hamming distance contains the usual mathematical senses of 'distance’

(2) Euclidean distance

e(A,B) = (pa (z:) = pp (24))°

1=0

Example Euclidean distance between sets A and B used for the previous Hamming

distance is

e(A, B) = V02 + 0.52 + 12 + 02

3.3. Fuzzy sets operations
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(3)Minkowski distance

duw(A, B) = (Zm <)>

reX

) . w € [1,00]

Generalizing Hamming distance and Euclidean distance results in Minkowski distance. It

becomes the Hamming distance for w = 1 while the Euclidean distance for w = 2.

3.3.4.1 Cartesian product and Projection of fuzzy subsets

Definition 15 (Cartesian product) The Cartesian product applied to n fuzzy sets can be
defined as follows: Let pa, (), pia, (), piay (), ..., pa, (x) as membership function
of Ay, A, As, ..., A,. Then, the membership degree of (z1,...,2,) € X1 X...x X,

on the fuzzy sets A; x ... x A, is,
HAL x Ayx...x A, = N [,UAl (x1),... y HA, (Ln)]

Example Lets X = {x1,29,23},Y = {y1,y2, } and lets Ay, Ay are two fuzzy subsets
respectively defined on X and Y given by : A; = {(x1,0.1); (x2,0.4); (x3,0.75) },
and Ay = {(y1,0.2) ; (y2,0.6) }. So, we find:

faxa, = {1, 91),0.1) 5 {(21,92),0.1) 5 (22, 91) , 0.2) 5 (22, ¥2) , 0.4) ;

((r3,91),0.2) 5 ((3,92) . 0.6)}
Definition 16 (Power of fuzzy sets)The second power of fuzzy set A is defined by:
par(z) = [pa(x))?, VeeX
Similarly, m'™ power of fuzzy set A™ may be computed as,
pam(x) = [pa(x)]™, VeeX.

Let A be a fuzzy subset defined on a universe X; X X, cartesian product of two

reference sets X; and Xos.

Definition 17 (Projection of fuzzy subsets) The projection on X; of the fuzzy set A of

X1 x Xy is the fuzzy set Projy, (A) of X1, whose the membership function is defined

3.3. Fuzzy sets operations



Chapter 3. Generalities on fuzzy sets 49

by

Vay € Xi, pprojy (4) (T1) = sup pia (21, 72) .
r2€Xso

We define analogously the projection of A on Xos.

3.3.5 Representation of fuzzy subset from classical subsets

3.3.5.1 Alpha-cuts of a Fuzzy sets

One of the most important concepts of fuzzy sets is the concept of an a-cuts and it’s

variant.

Definition 18 For a given fuzzy set A on a universe X, The a-cuts of A, written A, is
defined as

Ay ={r e X, pa(x) > a}, for aecl0,1]

particular cases:

(1) if a =0, then Ag = X

(2) if @ =1, then A; = ker(A)
Remark if A is a crisp set then supp(A4) = ker(A) = A = A,

Example let X = {1,2,3,...,10}, and A be a fuzzy subset of X given by

A={<102><2;05><308><41><507><603><T70><

80 >,<90><10;0 >}

the a-cuts of A :

Ag=X

Aps ={z € X, A(z) > 0.2} ={1,2,3,4,5,6}
Aps ={r € X, A(z) > 0.3} ={2,3,4,5,6}
Aps ={z € X, A(z) > 0.5} ={2,3,4,5}

A0.7 = {iC € X,A(l’) Z 02} = {3,4, 5}

3.3. Fuzzy sets operations
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Ag_g = {IE € X,A(iE) > 02} = {3,4}
A = {z e X, A(x) > 1} = {4}
Properties (Basic properties of a-cuts)Let A, B are two a fuzzy subset on a universe X
and a, § € [0, 1]
(1) if a <3, then Az C A,
(2) (ANB)y=A,NB,

(3) (AUB)a = Aa U B,

Definition 19 (The strong a-cuts)For any « of [0, 1], we define the

strong a-cut of the fuzzy subset A as the subset

A ={z e X, pa(z) > a}

Remark The strong a-cuts have the same properties as the a-cuts.

3.3.5.2 Representation of a fuzzy set by means of its a-cuts

Theorem (Decomposition theorem)Any fuzzy subset A of the reference set X is defined
from its a-cuts by:

Vo € Xpa(z) = sup a-xa,(7)

0<a<l

X e is the characteristic function of A“.

Proof. Let z € X and put u(x) = a,a € [0, 1] we have,
bale) =1 i pa(z) >0
po(x) =0 if  pu(r) <«

So, apa(z) = a = p(@);

From where,

asel[lopl] (apa(z)) > pi()

3.3. Fuzzy sets operations
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On the other hand we have:

Jr)=1 i pa(x) >«
for all « € [0, 1], ta) Ha2)
pa(z) =0 if  po(z) <«
we have two cases: ape(z) < a Va € |0,1]

Hence,

s (apa(z)) < p(z)

According to () and (*x) then Vo € X' pu(x) = sup,ep 1) (ta(z))

Example Let X be the set of some countries

X = { Germany, Belgium, Spain, France, G-Brittany, Italy }. We can take the

fuzzy subset associated with the "southern” property:
A={<G0><B0><S51><F08><GB,0><I,1>}

and build it 1-cut A; = {S, I} identical to its core, as well as it 0.8-cut Agg =
{S, F, I}, which is identical to all a-cuts, for all 0 < a < 0.8. It 0 -cut Ag = X

himself.

So we get

pa(G) = max(1 x0,...,0.1 x0,0x1)=0,

pa(B) =max(l x0,...,0,1x0,0x1)=0,

pa(S) =max(1x1,...,0x1)=1.0,

pA(F) =max(1x0,09x0,08x1,...,0x1)=0.8,
pua(GB) = max(1 x0,...,0.1 x0,0x 1) =0,

pa(l) =max(l x1,...,0x1)=1.

Which provides the definition of A.

3.3. Fuzzy sets operations
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Tringular norms and triangular conorms

Triangular norms are essential tools for interpreting conjunctions and disjunctions in fuzzy
logic. Subsequently, they play a crucial role in the intersection of fuzzy sets. However,
they are also interesting mathematical objects in their own right. Triangular norms, as
we use them today, also play a significant role in decision-making.

In this overview, we explore some algebraic, analytical, and logical aspects of triangular

norms.

4.1 Tringular norms

4.1.1 Basic definitions and properties

Definition 1 A triangular norm (t-norm for short) is a binary operation 7" on the unit
interval [0, 1], i.e., it is a function 7" : [0, 1]* — [0, 1] such that for all z,y, z € [0,1] :
the following four axioms are satisfied:

(T1) T(x,y) = T(y,x) ( commutativity)
(T2) T'(z,T(y,2)) =T(T(z,y), 2). (associativity)
(T3) T(x,y) < T(x,z) whenever y < z  (monotonicity)

(T4) T(xz,1) ==x. (boundary condition)

Example

52
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The following are the four basic t-norms T}, Tp, T}, and Tp given by, respectively:

Ty(z,y) = min(z, y) (Minimum)
Tp(x,y)=x-y (Product)
Tp(x,y) = max(x +y —1,0) ( Lukasiewicz t-norm)

0 if (r,0) € 0,17
Tp(z,y) =1 (Drastic product)
min(z,y) otherwise

Example
T(x,y) = T ey | Einstein
T(z,y) = = +§3_'my) Hamacher
T(2,y) = guxttyay | Dubois and Parade (1986) o € [0, 1]

Proposition 1 Any t-conorm 7 satisfies T'(0,x) = T'(x,0) = 0, for all x € [0, 1].

Proof. We know that 7'(z,0) € [0, 1], so T'(z,0) > 0, and we use the axiom (S3)(monotonicity),

we obtient T'(z,0) < T(1,0) = 0.

Proposition 2 Let A be a set with [0,1[C A C [0, 1], and assume that F : A2 — A is a
binary operation on A such that for all z,y, z € A the properties (T1) - (T3) and
F(z,y) < min(z,y)
are satisfied. Then the function T": [0,1]*> — [0, 1] defined by

Fr,y)  if (z,y) € (A\{1}),

min(z, y) otherwise.

T(x,y) =
is a t-norm.

Proof The commutativity (T1) and the boundary condition (T4) are satisfied by def-
inition. Concerning the associativity (T2), observe that for z,y,z € A\{0, 1} we
have T(T(z,y), z) = T(x, T(y, z)) as a A. consequence of the associativity of F, If
0 € {z,y, 2} then we get T'(x,T(y,2)) =0=T(T(z,y),2), and if 1 € {x,y, 2} then
T(T(x,y),2) = T(x,T(y,2)) follows from (T4). Concerning the monotonicity (T3),

suppose y < z. In the cases z,y,z € A\{1} or = € {0,1} or y = 0, the inequality
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T(z,y) < T(x,2) is inherited from the monotonicity of F and min. The only non-
trivial case is when z,y € A\{1} and z = 1, in which case T'(z,y) < T'(z, z) follows

from (x).

Definition 2 A function f : [0,1]> — [0,1] which satisfies, for all z,y,z € [0, 1], the

properties (T1)- (T3) and f(z,y) < min(z,y) is called a t-subnorm.

Example

1- f(z,y) = 0.
2- flx,y) = %
flry)=z-y.
Remark Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the func-

tion f : [0,1]* — [0,1] given by f(x,y) = 0, is a t-subnorm but not a t-norm because

(T4) not satisfies (f(x,1) =0 # x).

Corollary If f is a t-subnorm then the function T : [0,1]* — [0, 1] defined by

flxy) i (z,y) €[0, 1],

min(z,y) otherwise,

T(v,y) =

is a triangular norm.

4.1.1.1 Comparison of t-norms

Definition 3

(i) If, for two t-norms T; and Ty, the inequality Ti(z,y) < Ty(z,y) holds for all
(z,y) € [0,1]% then we say that Tj is weaker than T, or, equivalently, that T

is stronger than 7}, and we write in this case 77 < T5.

(ii) We shall write T} < Ty whenever 77 < Ty and T} # Ty, i.e., if T} < Ty and for

some (o, o) € [0, 1]*> we have T} (zg,y0) < T (0, Yo)
Lemma

(i) The minimum T}, is the strongest t-norm (Ty; > T).
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(ii) The drastic product Tp is the weakest t-norm (7 < 7).
Proof
(i) For each t-norm T and for each (z,y) € [0, 1]* we have both T'(z,y) < T'(z,1) =
z and T(Qj, y) S T(lvy) =Y, S0 T(l’y) S min(fﬂ,y) = T]W(gj)y)'
(ii) All t-norms coincide on the boundary of [0,1]* and for all (x,y) €]0,1[* we
trivially have T'(z,y) > 0 = Tp(z, y).
Example

0if (z,y) € [0,1[%, ,
To(z,y) = (Drastic product of weber).
min(z,y) otherwise.

Ti(z,y) = max(r +y—1,0) (Eukasiewicz).

Tis(r,y) = 57—, (Einstein).

Ty(x,y) =xy  (Algebraic or probaliste).

- Tos(x,y) = .35,  (Hamacher) .

T3(x,y) = min(z,y) ( Zadeh ).
We have: Ty <T) <T5 <15, <T55 <T3.

Definition 4 (Domination of t-norm)Let 77 and T be two t-norms. Then we say that

Ty dominates Ty (in symbols 77 > T) if for all x,y,u,v € [0, 1]

Tl (Tg(l’, y)? T‘Z(u7 U)) 2 T2 (TI(:E7 u)? Tl(y» U))

Lemma

(i) For each t-norm 7" we have Ty, > T and T > T).

(ii) If for two t-norms 7} and Ty we have T dominates T (17 > T5) then, Ty, is

stronger than Ty (T7 > T3).

(iii) The relation > on the set of all t-norms is reflexive and antisymmetric.

Proof
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