Chapter I

Tringular norms and triangular conorms

Triangular norms are essential tools for interpreting conjunctions and disjunctions in fuzzy
logic. Subsequently, they play a crucial role in the intersection of fuzzy sets. However,
they are also interesting mathematical objects in their own right. Triangular norms, as
we use them today, also play a significant role in decision-making.

In this overview, we explore some algebraic, analytical, and logical aspects of triangular

norms.

4.1 Tringular norms

4.1.1 Basic definitions and properties

Definition 1 A triangular norm (t-norm for short) is a binary operation 7" on the unit
interval [0, 1], i.e., it is a function 7" : [0, 1]* — [0, 1] such that for all z,y, z € [0,1] :
the following four axioms are satisfied:

(T1) T(x,y) = T(y,x) ( commutativity)
(T2) T'(z,T(y,2)) =T(T(z,y), 2). (associativity)
(T3) T(x,y) < T(x,z) whenever y < z  (monotonicity)

(T4) T(xz,1) ==x. (boundary condition)

Example
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The following are the four basic t-norms T}, Tp, T}, and Tp given by, respectively:

Ty(z,y) = min(z, y) (Minimum)
Tp(x,y)=x-y (Product)
Tp(x,y) = max(x +y —1,0) ( Lukasiewicz t-norm)

0 if (r,0) € 0,17
Tp(z,y) =1 (Drastic product)
min(z,y) otherwise

Example
T(x,y) = T ey | Einstein
T(z,y) = = +§3_'my) Hamacher
T(2,y) = guxttyay | Dubois and Parade (1986) o € [0, 1]

Proposition 1 Any t-conorm 7 satisfies T'(0,x) = T'(x,0) = 0, for all x € [0, 1].

Proof. We know that 7'(z,0) € [0, 1], so T'(z,0) > 0, and we use the axiom (S3)(monotonicity),

we obtient T'(z,0) < T(1,0) = 0.

Proposition 2 Let A be a set with [0,1[C A C [0, 1], and assume that F : A2 — A is a
binary operation on A such that for all z,y, z € A the properties (T1) - (T3) and
F(z,y) < min(z,y)
are satisfied. Then the function T": [0,1]*> — [0, 1] defined by

Fr,y)  if (z,y) € (A\{1}),

min(z, y) otherwise.

T(x,y) =
is a t-norm.

Proof The commutativity (T1) and the boundary condition (T4) are satisfied by def-
inition. Concerning the associativity (T2), observe that for z,y,z € A\{0, 1} we
have T(T(z,y), z) = T(x, T(y, z)) as a A. consequence of the associativity of F, If
0 € {z,y, 2} then we get T'(x,T(y,2)) =0=T(T(z,y),2), and if 1 € {x,y, 2} then
T(T(x,y),2) = T(x,T(y,2)) follows from (T4). Concerning the monotonicity (T3),

suppose y < z. In the cases z,y,z € A\{1} or = € {0,1} or y = 0, the inequality
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T(z,y) < T(x,2) is inherited from the monotonicity of F and min. The only non-
trivial case is when z,y € A\{1} and z = 1, in which case T'(z,y) < T'(z, z) follows

from (x).

Definition 2 A function f : [0,1]> — [0,1] which satisfies, for all z,y,z € [0, 1], the

properties (T1)- (T3) and f(z,y) < min(z,y) is called a t-subnorm.

Example

1- f(z,y) = 0.
2- flx,y) = %
flry)=z-y.
Remark Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the func-

tion f : [0,1]* — [0,1] given by f(x,y) = 0, is a t-subnorm but not a t-norm because

(T4) not satisfies (f(x,1) =0 # x).

Corollary If f is a t-subnorm then the function T : [0,1]* — [0, 1] defined by

flxy) i (z,y) €[0, 1],

min(z,y) otherwise,

T(v,y) =

is a triangular norm.

4.1.1.1 Comparison of t-norms

Definition 3

(i) If, for two t-norms T; and Ty, the inequality Ti(z,y) < Ty(z,y) holds for all
(z,y) € [0,1]% then we say that Tj is weaker than T, or, equivalently, that T

is stronger than 7}, and we write in this case 77 < T5.

(ii) We shall write T} < Ty whenever 77 < Ty and T} # Ty, i.e., if T} < Ty and for

some (o, o) € [0, 1]*> we have T} (zg,y0) < T (0, Yo)
Lemma

(i) The minimum T}, is the strongest t-norm (Ty; > T).

4.1. Tringular norms
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(ii) The drastic product Tp is the weakest t-norm (7 < 7).
Proof
(i) For each t-norm T and for each (z,y) € [0, 1]* we have both T'(z,y) < T'(z,1) =
z and T(Qj, y) S T(lvy) =Y, S0 T(l’y) S min(fﬂ,y) = T]W(gj)y)'
(ii) All t-norms coincide on the boundary of [0,1]* and for all (x,y) €]0,1[* we
trivially have T'(z,y) > 0 = Tp(z, y).
Example

0if (z,y) € [0,1[%, ,
To(z,y) = (Drastic product of weber).
min(z,y) otherwise.

Ti(z,y) = max(r +y—1,0) (Eukasiewicz).

Tis(r,y) = 57—, (Einstein).

Ty(x,y) =xy  (Algebraic or probaliste).

- Tos(x,y) = .35,  (Hamacher) .

T3(x,y) = min(z,y) ( Zadeh ).
We have: Ty <T) <T5 <15, <T55 <T3.

Definition 4 (Domination of t-norm)Let 77 and T be two t-norms. Then we say that

Ty dominates Ty (in symbols 77 > T) if for all x,y,u,v € [0, 1]

Tl (Tg(l’, y)? T‘Z(u7 U)) 2 T2 (TI(:E7 u)? Tl(y» U))

Lemma

(i) For each t-norm 7" we have Ty, > T and T > T).

(ii) If for two t-norms 7} and Ty we have T dominates T (17 > T5) then, Ty, is

stronger than Ty (T7 > T3).

(iii) The relation > on the set of all t-norms is reflexive and antisymmetric.

Proof
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(i) Trivially, (par separation des cas)

(ii) If for two t-norms T3 and T we have T} > T) then, putting y = u = 1 in (Equ

1), we immediately see that also T} > T3 holds.

(iii) from the commutativity (7)) and the associativity (73) we obtain for each t-
norm T and all x, y, u, v € [0, 1] the equality T'(T'(z,y), T'(u,v)) = T(T(z,u), T(y,v)),
(T(T(x, ), T(u,v)) = T(x,T(y, T(u,v)) = T2, T(T(y, u),v)) = T(x, T(T(u,y),v)

T(x,T(u, T(y,v)) = T(T(x,u), T(y,v))). ie., T > T, and the assumptions
Ty > Ty and Ty > Ty imply, as a consequence of (ii), 7} = T
Remark The converse is false: T7 > T does not imply 17 > Tb.

consider the t-norm T and the ¢ norm 7' given by:

zy ' 2
o) it (,0) € 0,12
min(z,y) otherwise,

we have Tp > T but Tp > T is false.

let (x,y) € [0,1]%if (z,y) € [0,1[* hence Tp = zy > % =T(z,y)
if max(z,y) = 1Tp(z,y) = min(z,y) = T(z,v).

So V(x,y) € [0,1)* we have Tp(x,y) > T(z,y) i,e,. Tp >T

but TP(T(i, y), T(U, U)) 2 T (TP(£E7 U), Tp(y, U))’

because if (z,y) € [0,1[* and (u,v) € [0,1[* we get Tp(Tx,y),T(u,v)) = = and

T (Tp(e,u), To(y,v) = 25,

Proposition 3

(i) The only t-norm T satisfying T'(z, x) = z for all z € [0, 1] is the minimum T);.

(ii) The only t-norm T satisfying T'(x,2) = 0 for all = € [0, 1] is the drastic product

Tp.

Proof
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(i) If for a t-norm T we have T'(z,z) = x for each x € [0, 1], then for all (z,y) €
[0,1]* with y < 2 the monotonicity (T3) implies y = T(y,y) < T(z,y) <
TM(:I:: 7/) =Y

which, together with (T1), means T' = T),.

(ii) Assume T'(z,z) = 0 for each x € [0,1[. Then for all (z,y) € [0,1[* with
y < x we have 0 < T'(z,y) < T(x,z) = 0, hence, together with (T1) and (T4),

yielding 1" = T)p.

4.2 Triangular conorms

4.2.1 Basic definitions and properties

Definition 5 A triangular conorm (t-conorm for short) is a binary operation S on the
unit interval [0,1], i.e., it is a function S : [0,1]> — [0, 1] such that for all x,y, 2 €
[0, 1] : the following four axioms are satisfied:
(S1) S(z,y) = S(y,x) ( commutativity)
(S2) S(x,S(y,2)) = S(S(x,y),2) ( associativity)
(S3) S(z,y) < S(z,2) whenever y < z  (monotonicity)

(S4) S(x,0) =z ( boundary condition)

Example

The following are the four basic t-norms Sy, Sp, Sr, and Sp given by, respectively:

Sy (x,y) = max(z,y) (mazimum)
Splr,y)=zx+y—x-y (probabilisticsum)
Sp(z,y) = min(x +y, 1) (Lukasiewiczt — conorm, boundedsum)

1 if(z,y) €]0,1]
Sp(z,y) = (drasticsum)

max(z, y)otherwise

Example
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T(x,y) = % Einstein
T(z,y) = “"ay_;if‘)’y Hamacher

T(x,y) = Hytey—miney.l-0) | 1y,10i5 and Parade (1986) o € [0, 1]

max(1—a,l—y,a)

Proposition 4 Any t-conorm S satisfies S(1,z) = S(z,1) = 1, for all € [0, 1].

Proof We know that S(z,1) € [0, 1], so S(x,1) < 1, and we use the axiom (S3)(monotonicity),

we obtient S(x,1) > 5(0,1) = 1.

Proposition 5 A function S : [0,1]*> — [0, 1] is a t-conorm if and only if there exists a

t-norm T such that for all (z,y) € [0, 1]?

S(r,y)=1-T(1 —xz,1—1y)

Proof. If T is a t-norm then obviously the operation S defined by (*) satisfies (S1)- (S3)

and (S4)
(51)8(r,y)=1-T(l -2, 1-y)=1—(1 -y, 1 —2) =95y, z),

(82) S(z,S(y,2)=1-T(1—2,1-8(y,2)) = 1-T(A—2,1-(1-T(1—y,1—2))) =

1-T(1—2,T(1—y,1—2)),

S(S(x,y),z)==1-T(1—=s(z,y),1—2)=1-TA-(1-T(1—2x,1—y)),1—2) =

1-TT(1—-2,1-y)1—2)=1-TQ—-2,T7(1 —y,1 —2)),
(S3)S(z,y)=1-T(1l—2,1—y)<1-T(Q—=x,1—2)=S5(z,2) whenever y < z
(S4)S(z,0)=1-T(1—2z,1)=1—-(1—2x) =z,

and is, therefore, a t-conorm. On the other hand, if S is a t-conorm, then define the

function T : [0, 1]> — [0, 1] by
Again, it is trivial to T is a t-norm and that (x) holds.

Remark
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(i) The t-conorm given by (*) is called the dual ¢-conorm of 7" and, analogously,

the t-norm given by (**) is said to be the dual t-norm of S.

(ii) The proof of (Proposition 5) makes it clear that also each t-norm is the dual op-
eration of some t-conorm. Note that (T, Sy), (I, Sp), (11, SL), and (I, Sp)

are pairs of t-norms and t-conorms which are mutually dual to each other.

Definition 6 Let 7" be a t-norm and S be a t-conorm. Then we say that 1" is distributive

over S if for all x,y, 2 € [0, 1]
T(x,5(y,2)) = S(T(x,y), T(x, 2))
and that S is distributive over T if for all z,y, z € [0, 1]
S(x, T(y, 2)) = T(S(x,y), S(x, 2))
Remark If T is distributive over S and S is distributive over T, then (7', 5) is called a
distributive pair (of t-norms and ¢-conorms).
Proposition 6 Let T be a t-norm and S a t-conorm. Then we have:

(i) S is distributive over T"if and only if T = T)y.
(i) 7 is distributive over S if and only if S = Sj,.

(iii) (7,9) is a distributive pair if and only if "= T); and S = S),.

Proof Obviously, each t-conorm is distributive over T); because of the monotonicity (S3)

of the t-conorm.

(C) we have

(2) Conversely, if S is distributive over T then for all z € [0,1] we have x =

S(x,7(0,0)) = T(S(z,0),5(z,0)) = T'(x,x), and from Proposition (..) we

4.2. Triangular conorms
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obtain 7" = Ty. An analogaus argument proves (ii), and (iii) is just the

combination of (i) and (ii).
Remark

(i) The duality changes the order: if, for some t-norms 77 and T, we have T} < Ty,
and if S7 and S, are the dual t-conorms of T} and T5, respectively, then we get

S1 > Sy, Consequently, for each t-conorm S we have
Sy <S<Sp

i.e., the maximum S}, is the weakest and the drastic sum Sp is the strongest

t-conorm.

(ii) For the t-conorms in example 18 we get this ordering:
SM < Sp < SL < SD

The continuity of t-conorm S is equivalente to the continuity of the t-norm

duale T'.

Definition 7

A T-conorm S : [0,1]*> — [0,1] is continue if for all the sequences convergentes

(Tn)pen » Wn)pen € [0, 1]Y we have :

S (lim Tp, lim yn) = lim S (zn, yn)

n—00 n—oQ n—0oQ
Example

e the t-conorms Sy, Sp, Sy, are continues, and the drastic sum Sp is not continue.

4.2.2 Elementary algebraic properties

Definition 8

4.2. Triangular conorms
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(i) An element a € [0,1] is called an idempotent element of S if S(a,a) = a. The
numbers 0 and 1 (which are idempotent elements for each ¢-conorm S ) are
called trivial idempotent elements of S, each idempotent element in |0, 1] will

be called a non-trivial idempotent element of S.

(ii) An element a €]0,1[ is called a nilpotent element of S if there exists some

n € N such that a(S") =0.

(iii) An element a €]0, 1] is called a zero divisor of S if there exists some b €]0, 1]

such that S(a,b) = 0.

4.2. Triangular conorms



Chapter 5

Representation of Lukasiewicz trivalent

algebras by tuzzy sets.

5.1 Generalities on Fuzzy Sets

Let E be a non-empty set, and P(E) be the set of subsets of E. P(E) equipped with
the usual operations of intersection (M), union (U), and complement (C') forms a Boolean

algebra.

If we denote by U the two-element set U = {0,1}, we know that there is a corre-
spondence (bijection) between P(E) and U¥ (the set of functions from FE to {0,1}) as

follows:

To each subset A of E, we associate its characteristic function

fa: P(E) — U" defined by:
A— fau
1 ifzeA
falz) =
0 ifux ¢ A
To each function 0 : ' — U, we associate the subset A = 671(1).

Throughout the following, we will agree to identify each subset A with its function fy.

62
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Thus, we can write

reAorAlr)=1
r¢ AorAlr)=0
Furthermore, the ordered set U (naturally ordered as 0 < 1) is a Boolean algebra (as well

as a chain) with the operations
a A f =min(q, 8)
aV p =max(q, 5)
la=1-a.
With the previous identifications, set operations can be translated as follows:
A NB is defined by: (ANB)(z) = A(x) AB(z), for all x € E.
A UB is defined by: (AUB)(z) = A(z) vV B(x), for all x € E.
A is defined by: (A)(z) =1 — A(z), forall z € E.

& is defined by: @(x) =0, for all = € F.

5.1.1 Fuzzy Structure

A fuzzy structure is defined as any pair (F, J) where:
e I is any non-empty set (whose elements will be denoted z, vy, z, . . .).
e J is a closed chain (that is, with a smallest element 0 and a largest element 1, with

0 # 1). The elements of J will be denoted a, 3, . ..

5.1.2 Fuzzy Set

In a fuzzy structure, a fuzzy set of E is any function from F to J.
Fuzzy sets will generally be denoted ,2(7 B R

The set of fuzzy sets of E will be denoted P(E).

5.1.3 Crisp Sets

If J = U ={0,1} then P(E) = P(E), which is the set of subsets of F, also known as the

crisp sets of K.

5.1. Generalities on Fuzzy Sets
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5.1.4 Order Relation on Fuzzy Sets

We will now define an order relation on P(E):
A C B if and only if for all z € E : A(x) < B(z).

This inclusion relation is obviously an order relation.

5.1.5 Union and Intersection of Fuzzy Sets

The union and intersection in P(E) naturally extend the union and intersection in P(E).
The union of two fuzzy sets A, B is defined by:
The intersection of two fuzzy sets A, B is defined by:

(AN B)(z) = min(A(z), B(z)).

And we have: Z(m) =1—A(x).

e (P(E),uU,n,C,, E) is a Boolean algebra.

5.1.6 Fuzziness Levels

Let’s define J* =J — {0}, J' =J — {1}, J"' =J —{0,1}.
Let A be a fuzzy set in a fuzzy structure (E, J).
For any o € J, we define the fuzziness level of degree o as the function N, : P(F) —
P(FE) defined by:
N, (A) ={x € E/A(z) > a}

For any o € J!, we define the strict fuzziness level of degree « as the function N/, :

P(FE) — P(FE) defined by:
N'(A)={z € E/A(z) > a}
(ZB(E), U,n,C,0, E, Ny, N1> is an L3 algebra.

Properties 1
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o N.(AUB) = N,(A) UN.(B).

N.(AUB) = {z € E/(AUB)(z) > a}.

= {z € E/max(A(z), B(z)) > a}.

= {z € E/A(z) > a or B(z) > a}.

= {z € E/A(z) > a}U{z € E/B(z) > a}.

= Na(A) U Na(B)

o N (ANB)= N.(A)NN.B).

Proof
N, ANB)={z e E/(ANB)(z) > a}.
= {z € E/min(A(z), B(z)) > a}.
— {z € E/A(z) > o and B(z) > a}.
= {z € E/A(z) > o} n{z € E/B(z) > a}.
N,(AN B) = No(A) N Ny(B).
e N,(9)=0
Proof
No(0) ={z € E/0(z) = a}
= {z € £/0 > a} such that o € {%,1}
=
o No(E)=E
Proof

N, (E)={z € E/E(x) > a}
NJE)={x€eE/1>a}=F

If o <= N3 <N,,ie., Ng(A) C No(A) for all A in P(E).

If A is a crisp set: No(A) = A for all a € J°.

For any «, 8 in J° : NyNs = Nj.

e Ifforall & € J°: Ny(A) = No(B) then A = B (Moisil’s determination principle).

5.1. Generalities on Fuzzy Sets



