Chapter

Tringular norms and triangular conorms

Triangular norms are essential tools for interpreting conjunctions and disjunctions in fuzzy logic. Subsequently, they play a crucial role in the intersection of fuzzy sets. However, they are also interesting mathematical objects in their own right. Triangular norms, as we use them today, also play a significant role in decision-making.

In this overview, we explore some algebraic, analytical, and logical aspects of triangular norms.

4.1 Tringular norms

4.1.1 Basic definitions and properties

Definition 1 A triangular norm (t-norm for short) is a binary operation T on the unit interval [0, 1], i.e., it is a function $T : [0, 1]^2 \to [0, 1]$ such that for all $x, y, z \in [0, 1]$: the following four axioms are satisfied:

(T1)
$$T(x,y) = T(y,x)$$
 (commutativity)

(T2)
$$T(x,T(y,z)) = T(T(x,y),z)$$
. (associativity)

(T3)
$$T(x,y) \le T(x,z)$$
 whenever $y \le z$ (monotonicity)

(T4)
$$T(x,1) = x$$
. (boundary condition)

Example

$T_M(x,y) = \min(x,y)$	(Minimum)
$T_P(x,y) = x \cdot y$	(Product)
$T_L(x,y) = \max(x+y-1,0)$	(Lukasiewicz t-norm)
$T_D(x,y) = \{ \begin{array}{c} 0 & \text{if } (x,y) \in [0,1[^2] \\ & \min(x,y) \text{ otherwise} \end{array} \}$	(Drastic product)

The following are the four basic t-norms T_M, T_P, T_L , and T_D given by, respectively:

Example

$T(x,y) = \frac{xy}{(2-x-y+xy)}$	Einstein
$T(x,y) = \frac{xy}{(x+y-xy)}$	Hamacher
$T(x,y) = \frac{xy}{\max(x,y,\alpha)}$	Dubois and Parade (1986) $\alpha \in [0, 1]$

Proposition 1 Any t-conorm T satisfies T(0,x) = T(x,0) = 0, for all $x \in [0,1]$.

Proof. We know that $T(x,0) \in [0,1]$, so $T(x,0) \ge 0$, and we use the axiom (S3)(monotonicity), we obtient $T(x,0) \le T(1,0) = 0$.

Proposition 2 Let A be a set with $]0,1[\subseteq A\subseteq [0,1],$ and assume that $F:A^2\to A$ is a binary operation on A such that for all $x,y,z\in A$ the properties (T1) - (T3) and $F(x,y)\leq \min(x,y)$

are satisfied. Then the function $T:[0,1]^2 \to [0,1]$ defined by

$$T(x,y) = \begin{cases} F(x,y) & \text{if } (x,y) \in (A \setminus \{1\})^2, \\ \min(x,y) & \text{otherwise.} \end{cases}$$

is a t-norm.

Proof The commutativity (T1) and the boundary condition (T4) are satisfied by definition. Concerning the associativity (T2), observe that for $x, y, z \in A \setminus \{0, 1\}$ we have T(T(x, y), z) = T(x, T(y, z)) as a \hat{A} . consequence of the associativity of F, If $0 \in \{x, y, z\}$ then we get T(x, T(y, z)) = 0 = T(T(x, y), z), and if $1 \in \{x, y, z\}$ then T(T(x, y), z) = T(x, T(y, z)) follows from (T4). Concerning the monotonicity (T3), suppose $y \leq z$. In the cases $x, y, z \in A \setminus \{1\}$ or $x \in \{0, 1\}$ or y = 0, the inequality

4.1. Tringular norms

 $T(x,y) \leq T(x,z)$ is inherited from the monotonicity of F and min. The only non-trivial case is when $x,y \in A \setminus \{1\}$ and z=1, in which case $T(x,y) \leq T(x,z)$ follows from (*).

Definition 2 A function $f:[0,1]^2 \to [0,1]$ which satisfies, for all $x,y,z \in [0,1]$, the properties (T1)- (T3) and $f(x,y) \leq \min(x,y)$ is called a t-subnorm.

Example

1-
$$f(x, y) = 0$$
.
2- $f(x, y) = \frac{x \cdot y}{3}$.
3- $f(x, y) = x \cdot y$.

Remark Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the function $f:[0,1]^2 \to [0,1]$ given by f(x,y)=0, is a t-subnorm but not a t-norm because (T4) not satisfies $(f(x,1)=0 \neq x)$.

Corollary If f is a t-subnorm then the function $T:[0,1]^2 \to [0,1]$ defined by

$$T(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in [0,1]^2, \\ \min(x,y) & \text{otherwise,} \end{cases}$$

is a triangular norm.

4.1.1.1 Comparison of t-norms

Definition 3

- (i) If, for two t-norms T_1 and T_2 , the inequality $T_1(x,y) \leq T_2(x,y)$ holds for all $(x,y) \in [0,1]^2$, then we say that T_1 is weaker than T_2 or, equivalently, that T_2 is stronger than T_1 , and we write in this case $T_1 \leq T_2$.
- (ii) We shall write $T_1 < T_2$ whenever $T_1 \le T_2$ and $T_1 \ne T_2$, i.e., if $T_1 \le T_2$ and for some $(x_0, y_0) \in [0, 1]^2$ we have $T_1(x_0, y_0) < T_2(x_0, y_0)$

Lemma

(i) The minimum T_M is the strongest t-norm $(T_M \ge T)$.

4.1. Tringular norms

(ii) The drastic product T_D is the weakest t-norm $(T_D \leq T)$.

Proof

- (i) For each t-norm T and for each $(x,y) \in [0,1]^2$ we have both $T(x,y) \le T(x,1) = x$ and $T(x,y) \le T(1,y) = y$, so $T(x,y) \le \min(x,y) = T_M(x,y)$.
- (ii) All t-norms coincide on the boundary of $[0,1]^2$ and for all $(x,y) \in]0,1[^2$ we trivially have $T(x,y) \ge 0 = T_D(x,y)$.

Example

-
$$T_0(x,y) = \begin{cases} 0 \text{ if } (x,y) \in [0,1]^2, \\ \min(x,y) \text{ otherwise.} \end{cases}$$
 (Drastic product of weber).

- $T_1(x,y) = \max(x+y-1,0)$ (Eukasiewicz).
- $T_{1.5}(x,y) = \frac{xy}{2-x-y+xy}$ (Einstein).
- $T_2(x,y) = xy$ (Algebraic or probaliste).
- $T_{2.5}(x,y) = \frac{xy}{x+y-xy}$ (Hamacher).
- $T_3(x,y) = \min(x,y)$ (Zadeh).

We have: $T_0 \le T_1 \le T_{1.5} \le T_2 \le T_{2.5} \le T_3$.

Definition 4 (Domination of t-norm)Let T_1 and T_2 be two t-norms. Then we say that T_1 dominates T_2 (in symbols $T_1 \gg T_2$) if for all $x, y, u, v \in [0, 1]$

$$T_1(T_2(x,y),T_2(u,v)) \ge T_2(T_1(x,u),T_1(y,v))$$

Lemma

- (i) For each t-norm T we have $T_M \gg T$ and $T \gg T_D$.
- (ii) If for two t-norms T_1 and T_2 we have T_1 dominates T_2 ($T_1 \gg T_2$) then, T_1 , is stronger than T_2 ($T_1 \geq T_2$).
- (iii) The relation \gg on the set of all t-norms is reflexive and antisymmetric.

Proof

- (i) Trivially, (par separation des cas)
- (ii) If for two t-norms T_1 and T_2 we have $T_1 \gg T_2$ then, putting y = u = 1 in (Equ. 1), we immediately see that also $T_1 \geq T_2$ holds.
- (iii) from the commutativity (T_1) and the associativity (T_2) we obtain for each tnorm T and all $x, y, u, v \in [0, 1]$ the equality T(T(x, y), T(u, v)) = T(T(x, u), T(y, v)), (T(T(x, y), T(u, v)) = T(x, T(y, T(u, v)) = T(x, T(T(y, u), v)) = T(x, T(T(u, y), v)) = T(x, T(u, T(y, v))) = T(x, T(u, T(y, v)))i.e., $T \gg T$, and the assumptions $T_1 \gg T_2 \text{ and } T_2 \gg T_1 \text{ imply, as a consequence of (ii), } T_1 = T_2$

Remark The converse is false: $T_1 \ge T_2$ does not imply $T_1 \gg T_2$.

consider the t-norm T_P and the t norm T given by:

$$T(x,y) = \begin{cases} \frac{xy}{2} & \text{if } (x,y) \in [0,1]^2, \\ \min(x,y) & \text{otherwise,} \end{cases}$$

we have $T_P \geq T$ but $T_P \gg T$ is false.

let
$$(x,y) \in [0,1]^2$$
 if $(x,y) \in [0,1]^2$ hence $T_P = xy > \frac{xy}{2} = T(x,y)$

if
$$\max(x, y) = 1T_P(x, y) = \min(x, y) = T(x, y)$$
.

So
$$\forall (x,y) \in [0,1]^2$$
 we have $T_P(x,y) \geq T(x,y)$ i.e., $T_P \geq T$

but
$$T_P(T(x,y),T(u,v)) \not\supseteq T(T_P(x,u),T_P(y,v)),$$

because if $(x, y) \in [0, 1]^2$ and $(u, v) \in [0, 1]^2$ we get $T_P(Tx, y), T(u, v) = \frac{xyuv}{4}$ and $T(T_P(x, u), T_P(y, v)) = \frac{xyuv}{2}$.

Proposition 3

- (i) The only t-norm T satisfying T(x,x) = x for all $x \in [0,1]$ is the minimum T_M .
- (ii) The only t-norm T satisfying T(x,x) = 0 for all $x \in [0,1[$ is the drastic product T_D .

Proof

- (i) If for a t-norm T we have T(x,x) = x for each $x \in [0,1]$, then for all $(x,y) \in [0,1]^2$ with $y \leq x$ the monotonicity (T3) implies $y = T(y,y) \leq T(x,y) \leq T_M(x,y) = y$, which, together with (T1), means $T = T_M$.
- (ii) Assume T(x,x) = 0 for each $x \in [0,1[$. Then for all $(x,y) \in [0,1[^2]$ with $y \le x$ we have $0 \le T(x,y) \le T(x,x) = 0$, hence, together with (T1) and (T4), yielding $T = T_D$.

4.2 Triangular conorms

4.2.1 Basic definitions and properties

Definition 5 A triangular conorm (t-conorm for short) is a binary operation S on the unit interval [0,1], i.e., it is a function $S:[0,1]^2 \to [0,1]$ such that for all $x,y,z \in [0,1]$: the following four axioms are satisfied:

(S1)
$$S(x,y) = S(y,x)$$
 (commutativity)

(S2)
$$S(x, S(y, z)) = S(S(x, y), z)$$
 (associativity)

(S3)
$$S(x,y) \le S(x,z)$$
 whenever $y \le z$ (monotonicity)

(S4)
$$S(x,0) = x$$
 (boundary condition)

Example

The following are the four basic t-norms S_M, S_P, S_L , and S_D given by, respectively:

$S_M(x,y) = \mathbf{r}$	$\max(x,y)$	(maximum)
$S_P(x,y) = x$	$+y-x\cdot y$	(probabilisticsum)
$S_L(x,y) = m$	$ \sin(x+y,1) $	(Lukasiewiczt-conorm,boundedsum)
$S_D(x,y) = \langle$		(drasticsum)

Example

$T(x,y) = \frac{x+y}{(1+xy)}$	Einstein
$T(x,y) = \frac{x+y-2xy}{(1-xy)}$	Hamacher
$T(x,y) = \frac{x+y+xy-\min(x,y,1-\alpha)}{\max(1-\alpha,1-y,\alpha)}$	Dubois and Parade (1986) $\alpha \in [0, 1]$

Proposition 4 Any t-conorm S satisfies S(1,x) = S(x,1) = 1, for all $x \in [0,1]$.

Proof We know that $S(x,1) \in [0,1]$, so $S(x,1) \le 1$, and we use the axiom (S3)(monotonicity), we obtient $S(x,1) \ge S(0,1) = 1$.

Proposition 5 A function $S:[0,1]^2 \to [0,1]$ is a t-conorm if and only if there exists a t-norm T such that for all $(x,y) \in [0,1]^2$

$$S(x,y) = 1 - T(1-x, 1-y)$$

Proof. If T is a t-norm then obviously the operation S defined by (*) satisfies (S1)- (S3) and (S4)

$$(S_1) S(x,y) = 1 - T(1-x, 1-y) = 1 - (1-y, 1-x) = S(y,x),$$

$$(S_2) S(x, S(y, z)) = 1 - T(1 - x, 1 - S(y, z)) = 1 - T(1 - x, 1 - (1 - T(1 - y, 1 - z))) = 1 - T(1 - x, T(1 - y, 1 - z)),$$

$$S(S(x,y),z) == 1 - T(1 - s(x,y), 1 - z) = 1 - T(1 - (1 - T(1 - x, 1 - y)), 1 - z) = 1 - T(T(1 - x, 1 - y), 1 - z) = 1 - T(1 - x, T(1 - y, 1 - z)),$$

$$(S_3) S(x,y) = 1 - T(1-x,1-y) \le 1 - T(1-x,1-z) = S(x,z)$$
 whenever $y \le z$

$$(S_4) S(x,0) = 1 - T(1-x,1) = 1 - (1-x) = x,$$

and is, therefore, a t-conorm. On the other hand, if S is a t-conorm, then define the function $T:[0,1]^2\to [0,1]$ by

$$T(x,y) = 1 - S(1-x, 1-y)$$

Again, it is trivial to T is a t-norm and that (*) holds.

Remark

- (i) The t-conorm given by (*) is called the dual t-conorm of T and, analogously, the t-norm given by (**) is said to be the dual t-norm of S.
- (ii) The proof of (*Proposition* 5) makes it clear that also each t-norm is the dual operation of some t-conorm. Note that (T_M, S_M) , (T_P, S_P) , (T_L, S_L) , and (T_D, S_D) are pairs of t-norms and t-conorms which are mutually dual to each other.
- **Definition 6** Let T be a t-norm and S be a t-conorm. Then we say that T is distributive over S if for all $x, y, z \in [0, 1]$

$$T(x, S(y, z)) = S(T(x, y), T(x, z))$$

and that S is distributive over T if for all $x, y, z \in [0, 1]$

$$S(x, T(y, z)) = T(S(x, y), S(x, z))$$

Remark If T is distributive over S and S is distributive over T, then (T, S) is called a distributive pair (of t-norms and t-conorms).

Proposition 6 Let T be a t-norm and S a t-conorm. Then we have:

- (i) S is distributive over T if and only if $T = T_M$.
- (ii) T is distributive over S if and only if $S = S_M$.
- (iii) (T, S) is a distributive pair if and only if $T = T_M$ and $S = S_M$.

Proof Obviously, each t-conorm is distributive over T_M because of the monotonicity (S3) of the t-conorm.

 (\subseteq) we have

$$S(x, T_M(y, z)) < S(x, y) \dots (a)$$

$$S(x, T_M(y, z)) \le S(x, z)....(b)$$

- (a) and (b) given that $S(x,T(y,z)) \leq T_M(S(x,y),S(x,z))$.
- (\supseteq) Conversely, if S is distributive over T then for all $x \in [0,1]$ we have x = S(x,T(0,0)) = T(S(x,0),S(x,0)) = T(x,x), and from Proposition (..) we

obtain $T = T_M$. An analogaus argument proves (ii), and (iii) is just the combination of (i) and (ii).

Remark

(i) The duality changes the order: if, for some t-norms T_1 and T_2 we have $T_1 \leq T_2$, and if S_1 and S_2 are the dual t-conorms of T_1 and T_2 , respectively, then we get $S_1 \geq S_2$. Consequently, for each t-conorm S we have

$$S_M \leq S \leq S_D$$

i.e., the maximum S_M is the weakest and the drastic sum S_D is the strongest t-conorm.

(ii) For the t-conorms in example 18 we get this ordering:

$$S_M < S_P < S_L < S_D$$

The continuity of t-conorm S is equivalente to the continuity of the t-norm duale T.

Definition 7

A T-conorm $S:[0,1]^2\to [0,1]$ is continue if for all the sequences convergentes $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\in[0,1]^{\mathbb{N}}$ we have :

$$S\left(\lim_{n\to\infty} x_n, \lim_{n\to\infty} y_n\right) = \lim_{n\to\infty} S\left(x_n, y_n\right)$$

Example

• the t-conorms S_M, S_P, S_L are continues, and the drastic sum S_D is not continue.

4.2.2 Elementary algebraic properties

Definition 8

4.2. Triangular conorms

- (i) An element a ∈ [0, 1] is called an idempotent element of S if S(a, a) = a. The numbers 0 and 1 (which are idempotent elements for each t-conorm S) are called trivial idempotent elements of S, each idempotent element in]0,1[will be called a non-trivial idempotent element of S.
- (ii) An element $a \in]0,1[$ is called a nilpotent element of S if there exists some $n \in \mathbb{N}$ such that $a_S^{(n)} = 0$.
- (iii) An element $a \in]0,1[$ is called a zero divisor of S if there exists some $b \in]0,1[$ such that S(a,b)=0.

Chapter 5

Representation of Lukasiewicz trivalent algebras by fuzzy sets.

5.1 Generalities on Fuzzy Sets

Let E be a non-empty set, and P(E) be the set of subsets of E. P(E) equipped with the usual operations of intersection (\cap) , union (\cup) , and complement (C) forms a Boolean algebra.

If we denote by U the two-element set $U = \{0, 1\}$, we know that there is a correspondence (bijection) between P(E) and U^E (the set of functions from E to $\{0, 1\}$) as follows:

To each subset A of E, we associate its characteristic function

$$f_{\mathcal{A}}: P(E) \to U^E$$
 defined by:
$$A \to f_A$$

$$f_{\mathcal{A}}(x) = \begin{cases} 1 & \text{if } x \in \mathcal{A} \\ 0 & \text{if } x \neq A \end{cases}$$

To each function $\delta: E \to \mathcal{U}$, we associate the subset $\mathcal{A} = \delta^{-1}(1)$.

Throughout the following, we will agree to identify each subset A with its function f_A .

Thus, we can write

$$x \in A \text{ or } A(x) = 1$$

$$x \notin A \text{ or } A(x) = 0$$

Furthermore, the ordered set U (naturally ordered as 0 < 1) is a Boolean algebra (as well as a chain) with the operations

$$\alpha \wedge \beta = \min(\alpha, \beta)$$

$$\alpha \vee \beta = \max(\alpha, \beta)$$

$$\exists \alpha = 1 - \alpha.$$

With the previous identifications, set operations can be translated as follows:

 $A \cap B$ is defined by: $(A \cap B)(x) = A(x) \wedge B(x)$, for all $x \in E$.

 $A \cup B$ is defined by: $(A \cup B)(x) = A(x) \vee B(x)$, for all $x \in E$.

 \overline{A} is defined by: $(\overline{A})(x) = 1 - A(x)$, for all $x \in E$.

 \emptyset is defined by: $\emptyset(x) = 0$, for all $x \in E$.

5.1.1 Fuzzy Structure

A fuzzy structure is defined as any pair (E, J) where:

- E is any non-empty set (whose elements will be denoted x, y, z, \ldots).
- J is a closed chain (that is, with a smallest element 0 and a largest element 1, with $0 \neq 1$). The elements of J will be denoted α, β, \ldots

5.1.2 Fuzzy Set

In a fuzzy structure, a fuzzy set of E is any function from E to J.

Fuzzy sets will generally be denoted $\widetilde{A}, \widetilde{B}, \dots$

The set of fuzzy sets of E will be denoted $\tilde{P}(E)$.

5.1.3 Crisp Sets

If $J = U = \{0, 1\}$ then $\tilde{P}(E) = P(E)$, which is the set of subsets of E, also known as the crisp sets of E.

5.1.4 Order Relation on Fuzzy Sets

We will now define an order relation on $\tilde{P}(E)$:

 $\tilde{A} \subseteq \tilde{B}$ if and only if for all $x \in E : \tilde{A}(x) \leq \tilde{B}(x)$.

This inclusion relation is obviously an order relation.

5.1.5 Union and Intersection of Fuzzy Sets

The union and intersection in $\tilde{P}(E)$ naturally extend the union and intersection in P(E).

The union of two fuzzy sets \tilde{A} , \tilde{B} is defined by:

$$(\tilde{A} \cup \tilde{B})(x) = \max(\tilde{A}(x), \tilde{B}(x)).$$

The intersection of two fuzzy sets \tilde{A}, \tilde{B} is defined by:

$$(\tilde{A} \cap \tilde{B})(x) = \min(\tilde{A}(x), \tilde{B}(x)).$$

And we have: $\overline{\tilde{A}}(x) = 1 - \widetilde{A}(x)$.

• $(\tilde{P}(E), \cup, \cap, C, \emptyset, E)$ is a Boolean algebra.

5.1.6 Fuzziness Levels

Let's define $J^0 = J - \{0\}, J^1 = J - \{1\}, J^{01} = J - \{0, 1\}.$

Let \tilde{A} be a fuzzy set in a fuzzy structure (E, J).

For any $\alpha \in J$, we define the fuzziness level of degree α as the function $N_{\alpha} : \tilde{P}(E) \to P(E)$ defined by:

$$N_{\alpha}(\tilde{A}) = \{x \in E/\tilde{A}(x) \ge \alpha\}$$

For any $\alpha \in J^1$, we define the strict fuzziness level of degree α as the function N'_{α} : $\tilde{P}(E) \to P(E)$ defined by:

$$N'_{\alpha}(\tilde{A}) = \{x \in E/\tilde{A}(x) > \alpha\}$$

 $(\tilde{P}(E), \cup, \cap, C, \emptyset, E, N_{1/2}, N_1)$ is an L₃ algebra.

Properties 1

• $N_{\alpha}(\tilde{A} \cup \tilde{B}) = N_{\alpha}(\tilde{A}) \cup N_{\alpha}(\tilde{B}).$

Proof

$$N_{\alpha}(\tilde{A} \cup \tilde{B}) = \{x \in E/(\tilde{A} \cup \tilde{B})(x) \ge \alpha\}.$$

$$= \{x \in E/\max(\tilde{A}(x), \tilde{B}(x)) \ge \alpha\}.$$

$$= \{x \in E/\tilde{A}(x) \ge \alpha \text{ or } \tilde{B}(x) \ge \alpha\}.$$

$$= \{x \in E/\tilde{A}(x) \ge \alpha\} \cup \{x \in E/\tilde{B}(x) \ge \alpha\}.$$

$$= N_{\alpha}(\tilde{A}) \cup N_{\alpha}(\tilde{B}).$$

• $N_{\alpha}(\tilde{A} \cap \tilde{B}) = N_{\alpha}(\tilde{A}) \cap N_{\alpha}(\tilde{B}).$

Proof

$$N_{\alpha}(\tilde{A} \cap \tilde{B}) = \{x \in E/(\tilde{A} \cap \tilde{B})(x) \ge \alpha\}.$$

$$= \{x \in E/\min(\tilde{A}(x), \tilde{B}(x)) \ge \alpha\}.$$

$$= \{x \in E/\tilde{A}(x) \ge \alpha \text{ and } \tilde{B}(x) \ge \alpha\}.$$

$$= \{x \in E/\tilde{A}(x) \ge \alpha\} \cap \{x \in E/\tilde{B}(x) \ge \alpha\}.$$

$$N_{\alpha}(\tilde{A} \cap \tilde{B}) = N_{\alpha}(\tilde{A}) \cap N_{\alpha}(\tilde{B}).$$

• $N_{\alpha}(\varnothing) = \varnothing$

Proof

$$\begin{split} N_{\alpha}(\emptyset) &= \{x \in E/\emptyset(x) \geq \alpha\} \\ &= \{x \in E/0 \geq \alpha\} \text{ such that } \alpha \in \left\{\frac{1}{2}, 1\right\} \\ &= \varnothing \end{split}$$

• $N_{\alpha}(E) = E$.

Proof

$$N_{\alpha}(E) = \{x \in E/E(x) \ge \alpha\}$$
$$N_{\alpha}(E) = \{x \in E/1 \ge \alpha\} = E$$

- If $\alpha \leq \beta \Rightarrow N_{\beta} \leq N_{\alpha}$, i.e., $N_{\beta}(\tilde{A}) \subseteq N_{\alpha}(\tilde{A})$ for all \tilde{A} in $\tilde{P}(E)$.
- If A is a crisp set: $N_{\alpha}(A) = A$ for all $\alpha \in J^{0}$.
- For any α, β in $J^0: N_{\alpha}N_{\beta} = N_{\beta}$.
- If for all $\alpha \in J^0: N_{\alpha}(\tilde{A}) = N_{\alpha}(\tilde{B})$ then $\tilde{A} = \tilde{B}$ (Moisil's determination principle).