Chapter 5

Representation of Lukasiewicz trivalent

algebras by tuzzy sets.

5.1 Generalities on Fuzzy Sets

Let E be a non-empty set, and P(E) be the set of subsets of E. P(E) equipped with
the usual operations of intersection (M), union (U), and complement (C') forms a Boolean

algebra.

If we denote by U the two-element set U = {0,1}, we know that there is a corre-
spondence (bijection) between P(E) and U¥ (the set of functions from FE to {0,1}) as

follows:

To each subset A of E, we associate its characteristic function

fa: P(E) — U" defined by:
A— fau
1 ifzeA
falz) =
0 ifux ¢ A
To each function 0 : ' — U, we associate the subset A = 671(1).

Throughout the following, we will agree to identify each subset A with its function fy.
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Thus, we can write

reAorAlr)=1
r¢ AorAlr)=0
Furthermore, the ordered set U (naturally ordered as 0 < 1) is a Boolean algebra (as well

as a chain) with the operations
a A f =min(q, 8)
aV p =max(q, 5)
la=1-a.
With the previous identifications, set operations can be translated as follows:
A NB is defined by: (ANB)(z) = A(x) AB(z), for all x € E.
A UB is defined by: (AUB)(z) = A(z) vV B(x), for all x € E.
A is defined by: (A)(z) =1 — A(z), forall z € E.

& is defined by: @(x) =0, for all = € F.

5.1.1 Fuzzy Structure

A fuzzy structure is defined as any pair (F, J) where:
e I is any non-empty set (whose elements will be denoted z, vy, z, . . .).
e J is a closed chain (that is, with a smallest element 0 and a largest element 1, with

0 # 1). The elements of J will be denoted a, 3, . ..

5.1.2 Fuzzy Set

In a fuzzy structure, a fuzzy set of E is any function from F to J.
Fuzzy sets will generally be denoted ,2(7 B R

The set of fuzzy sets of E will be denoted P(E).

5.1.3 Crisp Sets

If J = U ={0,1} then P(E) = P(E), which is the set of subsets of F, also known as the

crisp sets of K.

5.1. Generalities on Fuzzy Sets
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5.1.4 Order Relation on Fuzzy Sets

We will now define an order relation on P(E):
A C B if and only if for all z € E : A(x) < B(z).

This inclusion relation is obviously an order relation.

5.1.5 Union and Intersection of Fuzzy Sets

The union and intersection in P(E) naturally extend the union and intersection in P(E).
The union of two fuzzy sets A, B is defined by:
The intersection of two fuzzy sets A, B is defined by:

(AN B)(z) = min(A(z), B(z)).

And we have: Z(m) =1—A(x).

e (P(E),uU,n,C,, E) is a Boolean algebra.

5.1.6 Fuzziness Levels

Let’s define J* =J — {0}, J' =J — {1}, J"' =J —{0,1}.
Let A be a fuzzy set in a fuzzy structure (E, J).
For any o € J, we define the fuzziness level of degree o as the function N, : P(F) —
P(FE) defined by:
N, (A) ={x € E/A(z) > a}

For any o € J!, we define the strict fuzziness level of degree « as the function N/, :

P(FE) — P(FE) defined by:
N'(A)={z € E/A(z) > a}
(ZB(E), U,n,C,0, E, Ny, N1> is an L3 algebra.

Properties 1

5.1. Generalities on Fuzzy Sets
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o N.(AUB) = N,(A) UN.(B).

N.(AUB) = {z € E/(AUB)(z) > a}.

= {z € E/max(A(z), B(z)) > a}.

= {z € E/A(z) > a or B(z) > a}.

= {z € E/A(z) > a}U{z € E/B(z) > a}.

= Na(A) U Na(B)

o N (ANB)= N.(A)NN.B).

Proof
N, ANB)={z e E/(ANB)(z) > a}.
= {z € E/min(A(z), B(z)) > a}.
— {z € E/A(z) > o and B(z) > a}.
= {z € E/A(z) > o} n{z € E/B(z) > a}.
N,(AN B) = No(A) N Ny(B).
e N,(9)=0
Proof
No(0) ={z € E/0(z) = a}
= {z € £/0 > a} such that o € {%,1}
=
o No(E)=E
Proof

N, (E)={z € E/E(x) > a}
NJE)={x€eE/1>a}=F

If o <= N3 <N,,ie., Ng(A) C No(A) for all A in P(E).

If A is a crisp set: No(A) = A for all a € J°.

For any «, 8 in J° : NyNs = Nj.

e Ifforall & € J°: Ny(A) = No(B) then A = B (Moisil’s determination principle).

5.1. Generalities on Fuzzy Sets
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These properties remain valid for strict fuzziness levels.

Definition 1 For any z € L, we define:
o+ Ly — C(L) (the set of complemented elements of L).

Such that:

1. ¢, is an endomorphism of L, preserves 0 and 1;

N

. If o < B then pp < @y

w

. For any o, 8 in J°: pa05 = ps;

4. If oo (1) = pa(y) for all a in JO then z = y (Moisil’s determination principle).

5.2 Representation Theorem for L Algebras

Consider an L3 algebra.

X: dual space of L (the set of ultrafilters on L). We consider the fuzzy structure

P(X) = (X, J)
f:L— P(X)

x — f(x) the function defined by:
f(x)(U) =sup{a € J°/p,(x) € U}.

Proof

1) f is a morphism of closed lattice
o fxVy)(U)=sup{a e J/rarVy) €U}
=sup {a € J°/ (¢a(z) V ¢a(y)) € U} because ¢,
is an endomorphism.
= sup {a € J%/palx) € U or pu(y) € U}
=sup{a € J/p.(z) e U} Usup{a € J°/p,(y) € U}

= f(z)(U) U f(y)(U).
Hence f(z Vy) = f(z)U f(y).

5.2. Representation Theorem for Ls Algebras
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o flzAy)(U)=sup{a€ J/pa(zny) €U}

is an endomorphism.

= sup {a € J°/ (pa(z) A @aly)) € U} because ¢,

=sup{a € J°/p.(z) € U and ¢, (y) € U}
=sup {a € J*/pa(x) € U} Nsup {a € J/pu(y) € U}
= f@)(U)N f(y)U).

Hence f(z Ay) = f(z) N f(y).

o f(0)(U) =sup{a € J/¢a(0) € U}
=sup{a € J°/0 € U} (since p, preserves 0).

= sup ()

= 0.
Hence f(0) = 0.

o f((U)=sup{a e J%pa(1) € U}
=sup{a € J°/1 € U} (since ¢, preserves 1).

= sup J°

=1
Hence f(1) = X.

Thus f is a morphism of closed lattice.

2) f(psl(x)) = Ns(f(2)).

f(s(x)(U) =sup {a € J°/pa (ps(2)) €U}

=sup {a € J/ps(z) € U}

0 if pa(z) ¢ U;

1 if gO/g(ZI’) ceU

= 0 (ps(z)).

5.2. Representation Theorem for Ls Algebras
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Where o is the Stone monomorphism relative to X.

Np(f(z)) ={U € X/[f(z)(U) = 5}
—{U e X/f()(U) € [3,1]}
={Ue X/sup{a € J/p.(z) €U} € [3,1]}
={Ue X/sup{a € J/p.(z) e U} > B}
=0 (s(2)).
So f (¢s(x)) = Na(f(x)).
3) £ is injective
Finally, let’s show that f is injective.
f is injective < Ker f = 0.
Ker f = {x € L/ f(z) = 0}.
If v € Ker f < f(z) = 0.
< [(@)(U) = 0.
& sup{a € J/p,(z) €U} = 0.
& po(r) ¢ UVU € X,Va € J°.
Slpa(r) € U VU € X.
olpal(z) € NU.
<lealr) = 1.
& po(x) = 0.
& o) = 0a(0),Va € J°.
If x € Ker f & 2 = 0 (Moisil’s Determination Principle).

Thus f is injective.

Therefore, f is a Lukasiewicz algebra monomorphism.

5.2. Representation Theorem for Ls Algebras



Chapter 6

Tutorial Sessions

6.1 Tutorial 1

Exercise 1 Let (L,IO, (Ya)aero s (Va)gep s N ) be a Lukasiewicz multivalent algebra

with involution L:

Show that the following conditions are equivalent for an element x of L:

(i) = € C(L);
(ii) Jy € L, 3i € I° such that = = p;(y);
(iii) 3 € I° such that z = @;(x);
(iv) Vi € I° x = @;(x);
(iv) Vi, j € I° pi(z) = p;(z).
Exercise 2 Show that any involutive multivalent Lukasiewicz algebra is a Kleene algebra,

i.e.,

rANNx<yV Ny, (Ve,y € L)

Exercise 3 Let o(E) be the set of fuzzy subsets of a finite set £ = {z,y} with J =
{0, 5,1}

1. Provide WE)

P

2. Draw the Hasse diagram of (p(FE), C).
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3. Show that (p(E), C. I (Na)eso o (N8 pesi s 1 C’) is an involutive trivalent Lukasiewicz

algebra.

4. Let (L, I° (¢a) pero s Wa) gerr s N ) be an involutive multivalent Lukasiewicz al-

gebra. Show that it can be embedded in an algebra of fuzzy subsets.

6.2 Tutorial 2

Exercise
A- We know that an algebra (L, —, N, 1) of type (2,1,0) is equivalent to a Lukasiewicz
trivalent algebra (L, A,V, N,0, 1, i) via the transformations

(LW)z -y = (uNzVy) A (uNyVzx)=[(uNz Ay)V Nz Vy] and

(WL1) zVy=(z—y) —v,

(WL2) Ay= N(NxzV Ny),

(WL3) pux = Nx — z,

(WL4) NO =1,

if and only if

(W1) z — (y —» z) =1,

(W2) (z—=y) = ((y—2) = (x—=2)=1
(W3) ((r — Nz) = x) - x =1,

(W4) (Nx — Ny) — (y — x) =1,

(W5) l sz=1=x=1,

(W6) rt wy=1landy »z=1=x=y.

1. Show that the relation defined on L by # < y if and only if z — y = 1 is a partial

order on L.

2. Show that if z <y, theny — 2 <2 — 2.

6.2. Tutorial 2



Chapter 6. Tutorial Sessions 71

3. Show that (x - Nz) - x =z, and Nz <z — v.
4. Show that NNz =x, and Ny > Nx =x — vy
5. Show that r <y = Ny< Nrxand 1l sz ==
6. Show that r <z Vyandz <y & xVy=y.

7. Show that + — (y — 2) =y — (x — 2).
B- Let (L, I°, (Va)gero s (Va)pep s N ) be an involutive multivalent Lukasiewicz algebra.
1. Show that any involutive multivalent Lukasiewicz algebra is a Kleene algebra,
ie, t ANz <yV Ny, (Vz,y € L)

2. Now, suppose that L = {1,2,...,p — 1}.

Show that N (i) =p—i, for alli € L.

6.3 Tutorial 3

Exercise 1

Definition: Let GG be a group. A fuzzy subset A of the group G is called a fuzzy
subgroup of G if:
i pa(zy) = min{pa(z), pa(y)} for all z,y € G;
ii. g (x71) = pa(z) for all z € G.

Definition: Let G be a group, e denote the identity element of the group G. A
fuzzy subset A of the group G is called a fuzzy subgroup of G if:
i pa(zy™) > min{pa(z), ua(y)} for all z,y € G;
ii. pa(e) = 1.

1. Show that a fuzzy subset A of the group G is a fuzzy subgroup of G if and only
if: pa(zy™t) > min{pa(x), pa(y)} for all z,y € G.

2. Let A be a fuzzy subgroup of the group G and x an element of G then:

pa(zy) = pa(y) for all y € G if and only if pa(x) = pa(e).

6.3. Tutorial 3
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Exercise 2

Let (G,.) be a group, i.e., a set equipped with a binary operation denoted by dot,
which is associative, has an identity element denoted by 1, and such that for every
x in G, there exists an inverse x’ satisfying x.o’ = 2’.x = 1. A subgroup is a subset
of G stable under the inverse and the binary operation. Show that if A is a fuzzy

subset of GG, then the following are equivalent:
Vo € GuA(z') > nA(x)

& Vr,y € Gpa(ry’) > min (pa(x), pa(y))
& Va € [0,1], A, is a subgroup of G.

Then we say that A is a fuzzy group in G.

6.4 Tutorial 4

Exercise 1

Let X = [0,1] with o, 8 € R and let a,b € R. Define the fuzzy set A on X as

follows:
4

0, fr<a—aorb+p<uz
1, ifa<z<b

l+2—aa, ifa—a<zr<a

| 1-b—Br, ifb<z<b+p

Determine Ker(A), Supp(A) and H(A).
Exercise 2

1. Determine their union and intersection.
2. Give the complement of A,

3. Draw the diagrams of the union, intersection, and complement of A;.

Exercise 3

6.4. Tutorial 4



