Chapter 6

Tutorial Sessions

6.1 Tutorial 1

Exercise 1 Let $(L, I^0, (\varphi_\alpha)_{\alpha \in I^0}, (\psi_\alpha)_{\alpha \in I^1}, n, N)$ be a Lukasiewicz multivalent algebra with involution L:

Show that the following conditions are equivalent for an element x of L:

- (i) $x \in C(L)$;
- (ii) $\exists y \in L, \exists i \in I^0 \text{ such that } x = \varphi_i(y);$
- (iii) $\exists i \in I^0 \text{ such that } x = \varphi_i(x);$
- (iv) $\forall i \in I^0, x = \varphi_i(x);$
- (iv) $\forall i, j \in I^0, \varphi_i(x) = \varphi_j(x)$.

Exercise 2 Show that any involutive multivalent Lukasiewicz algebra is a Kleene algebra, i.e.,

$$x \wedge Nx \leq y \vee Ny, (\forall x,y \in L)$$

Exercise 3 Let $\wp(E)$ be the set of fuzzy subsets of a finite set $E=\{x,y\}$ with $J=\{0,\frac{1}{2},1\}$;

- 1. Provide $\widetilde{\wp(E)}$.
- **2.** Draw the Hasse diagram of $(\widetilde{\wp(E)}, \subset)$.

- 3. Show that $(\widetilde{\wp(E)}, \subset, J^0, (N_\alpha)_{\alpha \in J^0}, (N'_\alpha)_{\alpha \in J^1}, n, C)$ is an involutive trivalent Lukasiewicz algebra.
- **4.** Let $(L, I^0, (\varphi_\alpha)_{\alpha \in I^0}, (\psi_\alpha)_{\alpha \in I^1}, n, N)$ be an involutive multivalent Lukasiewicz algebra. Show that it can be embedded in an algebra of fuzzy subsets.

6.2 Tutorial 2

Exercise

A- We know that an algebra $(L, \to, N, 1)$ of type (2, 1, 0) is equivalent to a Lukasiewicz trivalent algebra $(L, \wedge, \vee, N, 0, 1, \mu)$ via the transformations

$$(\mathbf{L}\mathbf{W})x \to y = (\mu Nx \vee y) \wedge (\mu Ny \vee x) = [(\mu Nx \wedge y) \vee Nx \vee y]$$
 and

(WL1)
$$x \lor y = (x \to y) \to y$$
,

(WL2)
$$x \wedge y = N(Nx \vee Ny),$$

(WL3)
$$\mu x = Nx \rightarrow x$$
,

(WL4)
$$N0 = 1$$
,

if and only if

(W1)
$$x \to (y \to x) = 1$$
,

(W2)
$$(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$$
,

(W3)
$$((x \rightarrow Nx) \rightarrow x) \rightarrow x = 1$$
,

(W4)
$$(Nx \rightarrow Ny) \rightarrow (y \rightarrow x) = 1$$
,

(W5)
$$1 \rightarrow x = 1 \Rightarrow x = 1$$
,

(W6)
$$x \rightarrow y = 1$$
 and $y \rightarrow x = 1 \Rightarrow x = y$.

- 1. Show that the relation defined on L by $x \leq y$ if and only if $x \to y = 1$ is a partial order on L.
- **2.** Show that if $x \leq y$, then $y \to z \leq x \to z$.

- **3.** Show that $(x \to Nx) \to x = x$, and $Nx \le x \to y$.
- **4.** Show that NNx = x, and $Ny \to Nx = x \to y$
- **5.** Show that $x \leq y \Rightarrow Ny \leq Nx$ and $1 \rightarrow x = x$
- **6.** Show that $x \le x \lor y$ and $x \le y \Leftrightarrow x \lor y = y$.
- 7. Show that $x \to (y \to z) = y \to (x \to z)$.
- **B-** Let $(L, I^0, (\varphi_\alpha)_{\alpha \in I^0}, (\psi_\alpha)_{\alpha \in I^1}, n, N)$ be an involutive multivalent Lukasiewicz algebra.
 - 1. Show that any involutive multivalent Lukasiewicz algebra is a Kleene algebra, i.e., $x \wedge Nx \leq y \vee Ny, (\forall x, y \in L)$
 - **2.** Now, suppose that $L = \{1, 2, ..., p 1\}.$

Show that N(i) = p - i, for all $i \in L$.

6.3 Tutorial 3

Exercise 1

Definition: Let G be a group. A fuzzy subset A of the group G is called a fuzzy subgroup of G if:

- i. $\mu_A(xy) = \min \{ \mu_A(x), \mu_A(y) \}$ for all $x, y \in G$;
- ii. $\mu_A(x^{-1}) = \mu_A(x)$ for all $x \in G$.

Definition: Let G be a group, e denote the identity element of the group G. A fuzzy subset A of the group G is called a fuzzy subgroup of G if:

- i. $\mu_A(xy^{-1}) \ge \min \{\mu_A(x), \mu_A(y)\}\$ for all $x, y \in G$;
- **ii.** $\mu_A(e) = 1$.
- 1. Show that a fuzzy subset A of the group G is a fuzzy subgroup of G if and only if: $\mu_A(xy^{-1}) \ge \min \{\mu_A(x), \mu_A(y)\}$ for all $x, y \in G$.
- **2.** Let A be a fuzzy subgroup of the group G and x an element of G then: $\mu_A(xy) = \mu_A(y)$ for all $y \in G$ if and only if $\mu_A(x) = \mu_A(e)$.

Exercise 2

Let (G, .) be a group, i.e., a set equipped with a binary operation denoted by dot, which is associative, has an identity element denoted by 1, and such that for every x in G, there exists an inverse x' satisfying x.x' = x'.x = 1. A subgroup is a subset of G stable under the inverse and the binary operation. Show that if A is a fuzzy subset of G, then the following are equivalent:

$$\forall x \in G\mu A(x') \ge \mu A(x)$$

$$\Leftrightarrow \forall x, y \in G, \mu_A(x.y') \ge \min(\mu_A(x), \mu_A(y))$$

 $\Leftrightarrow \forall \alpha \in [0,1], A_{\alpha} \text{ is a subgroup of } G.$

Then we say that A is a fuzzy group in G.

6.4 Tutorial 4

Exercise 1

Let X = [0,1] with $\alpha, \beta \in R$ and let $a, b \in R$. Define the fuzzy set A on X as follows:

$$\mu A(x) = \begin{cases} 0, & \text{if } x < a - \alpha \text{ or } b + \beta < x \\ 1, & \text{if } a < x < b \\ 1 + x - \alpha a, & \text{if } a - \alpha < x < a \\ 1 - b - \beta x, & \text{if } b < x < b + \beta \end{cases}$$

Determine Ker(A), Supp(A) and H(A).

Exercise 2

- 1. Determine their union and intersection.
- **2.** Give the complement of A_1
- **3.** Draw the diagrams of the union, intersection, and complement of A_1 .

Exercise 3

Let $X = \{1, 2, 3, \dots, 10\}$ and A a fuzzy subset of X given by:

$$A = \{ <1, 0.2>, <2, 0.5>, <3, 0.8>, <4, 1.0>, <5, 0.7>, <6, 0.3>, < \\7, 0.0>, <8, 0.0>, <9, 0.0>, <10, 0.0> \}$$

Determine all α -cuts of A.

Exercise 4

1.
$$T_0(x,y) = \begin{cases} 0, (x,y) \in [0,1]^2 \\ \min(x,y) \text{ otherwise.} \end{cases}$$

2.
$$T_1(x,y) = \max(x+y-1,0)$$
.

3.
$$T_{1.5}(x,y) = 2 - x - xyy + xy$$
.

4.
$$T_2(x,y) = xy$$
.

5.
$$T_{2.5}(x,y) = x + xyy - xy$$
.

6.
$$T_3(x,y) = \min(x,y)$$
.

Show that we have: $T_0 \le T_1 \le T_{1.5} \le T_2 \le T_{2.5} \le T_3$.

Exercise 5

Let the fuzzy sets A, B, and C defined on real numbers by the membership functions $\mu_A(x) = \frac{x}{x+1}, \mu_B = \frac{1}{x^2+10}, \mu_C = \frac{1}{10^X}$. Determine the membership functions for:

a)
$$A \cup B, A \cap B$$
,

b)
$$A \cup B \cup C, A \cap B \cap C,$$

c)
$$A \cap \overline{C, B} \cup C$$
,

d)
$$\overline{A \cap B}, \overline{A} \cup \overline{B}$$

Exercise 6

Show that the two fuzzy sets satisfy the De Morgan's law.

$$\mu_A(x) = \frac{1}{1 + (x - 10)},$$

$$\mu_B = \frac{1}{1+x^2}$$

6.4. Tutorial 4

6.5 Tutorial 5

Exercise 1 Let X be a non-empty set, and $R: X^2 \to [0,1]$ be a fuzzy relation.

Show that R is an order relation if and only if R_{α} is a crisp order relation, $\alpha \in]0,1]$.

Exercise 2 An involutive Lukasiewicz trivalent algebra

is an algebra $(L, \wedge, \vee, N, 0, 1, \mu)$ of type (2, 2, 1, 0, 0, 1) such that

- **0.** $(L, \wedge, \vee, N, 0, 1)$ is a De Morgan algebra,
- 1. $\mu(x \wedge y) = \mu(x) \wedge \mu(y)$,
- **2.** $\mu(x \vee y) = \mu(x) \vee \mu(y)$,
- **3.** $\mu(x) \wedge N\mu(x) = 0$,
- **4.** $\mu(\mu(x)) = \mu(x)$,
- 5. $\mu(N\mu(x)) = N\mu(x)$,
- **6.** $N\mu Nx \le \mu(x)$,
- 7. $\mu(x) = \mu(x) \& \mu(Nx) = \mu(Nx) \Rightarrow x = y$,
- 8. $\mu(x) \wedge Nx = x \wedge Nx$,
- **9.** $\mu(x) \vee Nx = 1$,
- 10. $N\mu Nx \vee (\mu(x) \wedge \mu(Nx)) \vee \mu Nx = 1$,
- **11.** $x \le \mu x$,
- 12. $x \wedge Nx \leq x \vee Nx$.
- **a.** Show that (0) & (8) & (9) \Rightarrow (11).
- **b.** Show that the following axiom systems are equivalent:

$$egin{aligned} \mathbf{S0} &= \{(\mathbf{0}), \dots, (\mathbf{7})\} \ \\ \mathbf{S1} &= \{(\mathbf{0}), (\mathbf{1}), (\mathbf{4}), (\mathbf{5}), (\mathbf{8}), (\mathbf{10}), (\mathbf{11})\} \ \\ \mathbf{S2} &= \{(\mathbf{0}), (\mathbf{1}), (\mathbf{8}), (\mathbf{9})\} \ \\ \mathbf{S3} &= \{(\mathbf{0}), (\mathbf{8}), (\mathbf{9}), (\mathbf{12})\}. \end{aligned}$$

6.6 Final Exam, Algebraic Logic, February 2021

Exercise 1 (10 pts) Let $(L, I, (\varphi_{\alpha})_{\alpha \in I^0}, (\psi_{\alpha})_{\alpha \in I^1}, n, N)$ be a multivalent Lukasiewicz algebra with involution.

- **1.** Give the formula for N if |I| = 3.
- **2.** Could we find this formula if $|I| \ge 4$ (cardinality of $I \ge 4$)?
- **3.** Show that if the chain I is finite, then the involution N is unique.
- **4.** We are in the framework of a \mathcal{L}_{3-} algebra $(L, \wedge, \vee, 1, 0, N, \mu)$ (in the sense of Moisil's first definition). Show the equivalences.
 - (a) $Nx \lor \mu x = 1$.
 - (b) $x \vee \gamma x = 1$.
 - (c) $\eta x \vee \mu x = 1$.

Exercise 2 (6 pts) Let X be a non-empty set, and $R: X^2 \to [0,1]$ be a fuzzy relation.

Show that R is an order relation if and only if R_{α} is a crisp order relation for all $\alpha \in]0,1]$.

Exercise 3 (4 pts) Let A, B be fuzzy sets defined on \mathbb{R} by membership functions $\mu_A(x) = \frac{1}{(x-1)^2+1}$ and $\mu_B(x) = \frac{1}{x^2+1}$.

Determine the membership functions of each of the following fuzzy sets: $A \cup B, A \cap B, \overline{A \cap B}, \overline{A} \cup \overline{B}$.

6.6.1 Final Exam Correction

Exercise 1 (10 pts)

Let $(L, I, (\varphi_{\alpha})_{\alpha \in I^0}, (\psi_{\alpha})_{\alpha \in I^1}, n, N)$ be a multivalent Lukasiewicz algebra with involution.

1. If |I|=3, we are in the case of a trivalent Lukasiewicz algebra, and the involution N is given by the formula: $Nx=\eta x\vee (x\wedge \gamma x). \to (1.50pts)$

- **2.** If $|I| \ge 4$, this question is still open. $\to (1.00pts)$
- **3.** If the chain I is finite, then the involution N is unique. Indeed, assuming that |I| = p and we have two decreasing involutions N_1 and N_2 , then:

$$\varphi_1 N_1 = N_1 \varphi_{p-1} = \overline{\varphi_{p-1}} = \varphi_1 N_2
\varphi_2 N_1 = N_2 \varphi_{p-2} = \overline{\varphi_{p-2}} = \varphi_2 N_2
\vdots \vdots \vdots \vdots \vdots \vdots \vdots \cdots \cdots (1.50 pts)
\varphi_{p-1} N_1 = N_1 \varphi_1 = \overline{\varphi_1} = \varphi_1 N_2$$

Thus, by Moisil's determination principle, we obtain $N_1 = N_2$.

- **4.** Proof of equivalences:
 - $(a) \Rightarrow (b)$ Assume that $Nx \lor \mu x = 1$. We assume that: $Nx \lor \mu x = 1$, i.e., (a). Replace x with Nx, we get: $Nx \lor \mu x = NNx \lor \mu Nx = 1$. This implies $x \lor \gamma x = 1$. So, $(a) \Rightarrow (b)$. $\rightarrow (1.50pts)$
 - $(b) \Rightarrow (a)$ Assume that: $x \lor \gamma x = 1$. By replacing x with Nx in (b), we obtain $Nx \lor \gamma Nx = 1 \Rightarrow Nx \lor \mu x = 1$. So, $(a) \Leftrightarrow (b) \to (1.5pts)$
 - (b) \Rightarrow (c) Assume that $x \lor \gamma x = 1$. By replacing x with μx in (b) $x \lor \gamma x = 1$. Then $\mu x \lor \gamma \mu x = 1(\gamma \mu = \mu N \mu = \mu \bar{\mu} = \bar{\mu} = N \mu = \eta)$. Thus, $\mu x \lor \eta x = 1$. So, (b) \Rightarrow (c). Finally. \rightarrow (1.50pts)
 - (c) \Rightarrow (b) It suffices to replace x with Nx and use the fact that $\mu Nx = \gamma x$ and $x \geq \vartheta x$. $\rightarrow (1.50pts)$

Exercise 2 (06 pts)

Let's assume that $R: X \times X \to [0,1]$ is an order relation.

- * R(x,x) = 1, for all $x \in X$, then $(x,x) \in R_{\alpha}$, for all $\alpha \in]0,1]$, i.e., R_{α} is reflexive, for all $\alpha \in]0,1]$. $\to (1pt)$
- ** Assume that $(x, y) \in R_{\alpha}$, and $(y, x) \in R_{\alpha}$. Then $R(x, y) \wedge R(y, x) \geq \alpha \Rightarrow x = y$, i.e., R_{α} is antisymmetric. $\rightarrow (1pt)$
- ** * Assume that $(x,y) \in R_{\alpha}, (x,z) \in R_{\alpha}$. Then $R(x,z) \geq R(x,y) \wedge R(x,z) \geq \alpha$, $(x,z) \in R_{\alpha}$, so R_{α} is transitive. $\to (1pt)$

Conversely, if R_{α} is an order relation $\forall \alpha \in]0,1]$. Let's show that R is an order relation.

- * R_1 is an order relation, so $R(x,x) \ge 1$, thus R(x,x) = 1. $\to (1pt)$
- ** Let $x \neq y$ with $R(x,y) \wedge R(y,x) = \alpha$. Then $(x,y) \in R_{\alpha}$ and $(y,x) \in R_{\alpha}$, and by antisymmetry of R_{α} , we get $\alpha = 0$. $\rightarrow (1pt)$
- *** Let $x, y, z \in X$. Set $R(x, y) \wedge R(x, z) = \lambda$.

Since R_{λ} is transitive, $(x,z) \in R_{\lambda}$. So $R(x,y) \wedge R(x,z) \leq R(x,z)$. $\to (1pt)$

In conclusion, R is an order relation $\Leftrightarrow R_{\alpha}$ is an order relation $\forall \alpha \in]0,1]$.

Exercise 3 (04 pts)

A is defined on $\mathbb{R}\setminus\{1\}$ and B is defined on $\mathbb{R}\setminus\{0\}$

We study the sign of $d(x) = \mu_A x - \mu_B(x)$.

$$d(x) = \mu_A(x) - \mu_B(x) = \frac{1}{(x-1)^2 + 1} - \frac{1}{x^2 + 1} = \frac{2x - 1}{((x-1)^2 + 1)(x^2 + 1)}$$

We have $((x-1)^2+1)(x^2+1)>0$.

So d(x) has the same sign as 2x - 1, or d(x) > 0, if $x \ge \frac{1}{2}$.

Alternatively, $\mu_A(x) \ge \mu_B(x)$ if $x \ge \frac{1}{2}$. $\to (0.5pt)$

In conclusion:

$$\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x)) = \begin{cases} \mu_A(x), & \text{si } x \ge \frac{1}{2}; \\ \mu_B(x), & \text{si } x < \frac{1}{2}. \end{cases} \to (1pt)$$

$$\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x)) = \begin{cases} \mu_B(x), & \text{si } x \ge \frac{1}{2} \\ \mu_A(x), & \text{sinon.} \end{cases} \to (1pt)$$

$$\mu_{\overline{A \cap B}}(x) = 1 - \min(\mu_A(x), \mu_B(x)) = \begin{cases} 1 - \mu_B(x), & \text{si } x \ge \frac{1}{2}; \\ 1 - \mu_A(x), & \text{x } < \frac{1}{2}. \end{cases} \to (0, 5pt)$$

$$\mu_{\overline{A \cup B}}(x) = \max(\mu_{\overline{A}}(x), \mu_{\overline{B}}(x)) = \max(1 - \mu_A(x), 1 - \mu_B(x)) \to (0, 5pt)$$

$$= \begin{cases} 1 - \mu_B(x), & \text{si } x \ge \frac{1}{2} \\ 1 - \mu_A(x), & \text{si } x < \frac{1}{2} \end{cases} \to (0, 5pt)$$

$$= \mu_{\overline{A \cap B}}(x)$$