REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université de M'sila Faculté des Mathématiques et de l'Informatique Département d'informatique

TD/TP Series N: 02

جامعة المسيلة كلية الرياضيات والإعلام الآلي قسم الإعلام الآلي

Academic year: 2023/2024 Chapter 1 : Recursion

Level: 1st year computer science Material: ADS2

Exercise 1: (TD)

Consider the following program:

- What is the value of "r" after running the program for a=3 and b=5
- What do you notice? And why?
- ▶ How do we fix this?
- > Convert the sum procedure into a function.

\perp	#include <string.n></string.n>
2	<pre>sum(int d, int f, int s) {</pre>
3	<pre>int i;</pre>
4	s=0;
5	for (i = d; i <= f; i++)
6	s = s + i;
7	}
8	main() {
9	int a, b, r;
10	r=0;
11	<pre>printf("enter two numbers");</pre>
12	scanf(<mark>"%d%d"</mark> , &a, &b);
13	sum(a, b , r);
14	printf(<mark>"the result is %d"</mark> , r);
15	}

Exercise 2: (TP)

Write a recursive subroutine "conv10to2" to convert from decimal system 10 to binary system 2 (display)

Exercise 3: (TD/ TP)

Write a recursive subroutine called 'pos' that returns the location of the character 'x' in string 's' starting from position 'd' and returns -1 if it cannot be found.

Exercise 4: (TP)

If you know that the largest common divisor is defined as follows:

 $ext{gcd}(x,y) = egin{cases} x & ext{if } y = 0 \ ext{gcd}(y, ext{remainder}(x,y)) & ext{if } x \geq y ext{ and } y > 0 \end{cases}$

Write 'PGCD', a recursive subroutine to calculate the greatest common divisor of two numbers.

Write the main program to reduce the fraction $\frac{A}{B}$ using the **PGCD**

Exercise 5: (TD/TP)

If you know that the square root of any number 'a' is defined by the following formula:

$$x_0 = 1$$
$$x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right)$$

Write "root", a recursive subroutine to calculate the square root of *a*

Exercise 6: (TD)

Write "Sum", a recursive subroutine to calculate the following sum:

$$s = \sum_{i=1}^{n} \frac{-1^{i+1}}{i} x^{i}$$

Exercise 7: (at home)

- Rewrite all subroutines of series N01 using recursion.
- Rewrite all subroutines in series N02 iteratively.