REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Level: 1st year computer science
Material: ADS2
TD/TP Series N: 02
Academic year: 2023/2024
Chapter 1 : Recursion
Exercise 1: (TD)
Consider the following program:
$>$ What is the value of " r " after running the program for $a=3$ and $b=5$
$>$ What do you notice? And why?
$>$ How do we fix this?
$>$ Convert the sum procedure into a function.

```
#include <string.h>
sum(int d, int f, int s) {
    int i;
    s=0;
    for (i = d; i <= f; i++)
        s = s + i;
}
main() {
    int a, b, r;
    r=0;
    printf("enter two numbers");
    scanf("%d%d", &a, &b);
    sum(a, b, r);
    printf("the result is %d", r);
```

\}

Exercise 2: (TP)
Write a recursive subroutine "conv10to2" to convert from decimal system 10 to binary system 2 (display)
Exercise 3: (TD/ TP)
Write a recursive subroutine called 'pos' that returns the location of the character ' x ' in string 's' starting from position ' d ' and returns -1 if it cannot be found.

Exercise 4: (TP)

If you know that the largest common divisor is defined as follows:
$\operatorname{gcd}(x, y)= \begin{cases}x & \text { if } y=0 \\ \operatorname{gcd}(y, \text { remainder }(x, y)) & \text { if } x \geq y \text { and } y>0\end{cases}$
Write 'PGCD', a recursive subroutine to calculate the greatest common divisor of two numbers.
Write the main program to reduce the fraction $\frac{A}{B}$ using the $\boldsymbol{P G C D}$

Exercise 5: (TD/TP)

If you know that the square root of any number ' a ' is defined by the following formula:

$$
\begin{gathered}
x_{0}=1 \\
x_{i+1}=\frac{1}{2}\left(x_{i}+\frac{a}{x_{i}}\right)
\end{gathered}
$$

Write "root", a recursive subroutine to calculate the square root of a

Exercise 6: (TD)

Write "Sum", a recursive subroutine to calculate the following sum:

$$
s=\sum_{i=1}^{n} \frac{-1^{i+1}}{i} x^{i}
$$

Exercise 7: (at home)

- Rewrite all subroutines of series N01 using recursion.
- Rewrite all subroutines in series N02 iteratively.

