First Year, Physics II	Chapter I	Tutorial	1
Exercise 01	04 🗣		03
Four charges Q_1 , Q_2 , Q_3 , and Q_4 are arrange opposite figure.	ed as shown in the	а	
 Represent on the figure the electric fore electric charge Q₃ 	ces applied to the	а	
 Write the analytical expression for each on the electric charge Q₃ 	n electric force acting		02
3) Calculate the net force applied to charg $1 \mu C \Omega_4 = 2 \mu C$)	$Q_{3.} (Q_{1} = Q_{2} = Q_{3} = Q_{3.})$		

Exercise 02

Two tiny conducting balls of identical mass m and identical charge q hang from non-conducting threads of length L. Assume that θ is so small that $\tan \theta$ can be replaced by $\sin \theta$; show that, for equilibrium: $X = (q^2 L/mg 2\pi\epsilon_0)^{1/3}$

Exercise 03

In the basic CsCl (Cesium chloride) crystal, Cs+ ions form the corners of a cube and a Cl- ion is

at the centre of cube. Edge length is 0.40 nm.

(a) What is the magnitude of the net electrostatic force exerted on Cl- ion by the eight Cs+ ions?

Exercise 04 What is the nature of the electrical

charges carried by the balls shown in the figure?

Exercise 05

 What is the net force on charge A in each configuration shown in the opposite picture?

0

C.

C١

C

2) We want to put the charge $q_a = -1 \, \mu C$

between two charges q_c and q_b (on the line joining the two charges as shown figure below) where the applied force from $q_b = +1\mu C$ charge on the charge q_a is cancelled by the force from the charge $q_c = +2 \mu C$ charge. Since forces are vectors,. We will assume that the 1 μ C charge is some distance x from the +1 μ C. Calculate the distance x between q_a and q_b

