First Year, Physics II	Chapter I	Tutorial 1
Exercise 01 Consider three charges q_1 , q_2 , q_3 each equal to triangle of side <i>l</i> . What is the force on a charge at the centroid of the triangle, as shown in the o	q at the vertices of an equilateral Q (with the same sign as q) placed opposite Figure.	F_B F_C F_C F_R
Exercise 02 Consider the charges +q, +2q, and –q placed at triangle, as shown in opposite figure. What is t	t the vertices of an equilateral he force on each charge?	$-1 \ \mu C \xrightarrow{A} +1 \mu C$ $10 \ cm$ $10 \ cm$ $10 \ cm$ $10 \ cm$ $-1 \ \mu C \xrightarrow{A} +2 \mu C$

Exercise 03

In the Millikan experiment, two horizontal metal plates are separated by a distance of 1.5 *cm*, with a potential difference of 3 kV. One plate is positively charged, the other negatively charged. Small oil droplets, negatively charged, are present between the plates in equilibrium. Calculate the charge of a spherical oil droplet and compare it to the charge of an electron. Given values: oil density (ρ) = 900 kg/m³, droplet radius (R) = 2.05 µm, gravitational field strength (g) = 9.8 m/s².

Exercise 04

Consider three charges $q1 = +12 \mu C$, $q2 = +6 \mu C$, and $q3 = -4 \mu C$ are setup as shown in opposite figure. Find the resultant force exerted on the charge q2 by the two charges q1 and q3.

Exercise 05

A negative point charge of magnitude q is located on the *x*-axis at point x = -a, and a positive point charge of the same magnitude is located at x = +a, see the opposite figure. A third positive point charge q_0 is located on the *y*-axis with a coordinate (0, y). (a) What is the magnitude and direction of the force exerted on q_0 when it is at the origin (0,0)? (b) What is the force on q_0 when its coordinate is (0, y)? (c) Sketch a graph of the force on q_0 as a function of *y*, for values of *y* between -4a and +4a.

Exercise 06

The position vector expression for two charges Q_1 and Q_2 in an orthogonal and homogeneous feature (oxy) is given as follows:

$\overrightarrow{OQ_1} = 2 \vec{\iota} + 3 \vec{j} ; \overrightarrow{OQ_2} = -2 \vec{\iota} - 3 \vec{j}$

- 1) Represent Graphically the force exerted by charge Q_1 and Q_2
- 2) Calculate the electrical force that Q_1 exerts on Q_2
- 3) Calculate the force that both charges Q_1 and Q_2 exert on a charge Q_3 placed at the origin.