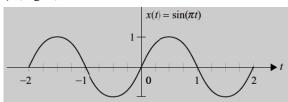
Université Mohamed Boudiaf - M'Sila Département de Génie Electrique Module : Systèmes Asservis échantillonnés

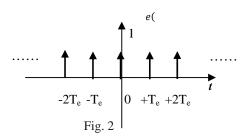
Faculté de Technologie M01 CE

TD N°:01

Exercice 1

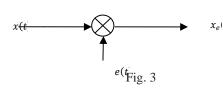
On considère le signal $x(t) = \sin(\pi t)$ (Fig. 1)




Fig. 1: La fonction sinus.

✓ Discrétiser ce signal pour une période d'échantillonnage : T = 0.25 s ?, avec : $-8 \le k \le +8$

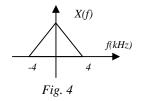
Exercice 2


La figure 2 représente le train d'impulsion rectangulaire :

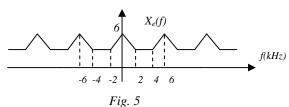
- 1. Trouver la formule de e(t); N.B: (e(t)): une répétition de la fonction Dirac $\delta(t)$).
- 2. Calculer la série de Fourier complexe de e(t).
- 3. Calculer la Transformée de Fourier de e(t).

Echantillonnage: (Fig. 3)

✓ Trouver le signal échantillonnée X_e .


Exercice 3

Le signal $s(t) = 4f_0 sinc(4\pi f_0 t) + f_0 sinc^2(\pi f_0 t)$ est échantillonné idéalement à une fréquence F_e .


- 1- Déterminer la fréquence d'échantillonnage minimale permettant la reconstitution exacte du signal.
- 2- Tracer le spectre du signal échantillonné pour une fréquence d'échantillonnage $F_e = 6f_0$

Exercice 4

Un signal x(t), dont la transformée de Fourier X(f) est représentée par la figure (4), est échantillonné à une cadence F_e . Le signal échantillonné (idéalisé) possède la transformée de Fourier de la figure (5).

1

✓ Déterminer quelle est la fréquence d'échantillonnage utilisée et indiquer si ce choix est judicieux pour permettrez une reconstitution du signal par filtrage idéal (justifier votre réponse).

Exercice 5

V Peut-on reconstituer exactement le signal $x(t) = A. sinc^2\left(\frac{\pi t}{T}\right)$ s'il est échantillonné idéalement à une cadence $F_e = \frac{1}{T}$.