
Chapter 3: Part 1
Pointers and linked lists

Algorithmics and data structure 2

Presented by : Dr. Benazi Makhlouf
Academic year : 2023/2024

Chapter 03 Content:

1. Introduction

2. Pointers

3. Pointer operations

4. Dynamic memory management

5. …

1. Introduction
• A program consists of both data and instructions.

• Data is stored in memory as variables.

• A variable is a designated memory space. It has a name, a type, a value,

and a storage address.

• The memory address is a natural number indicating the location of a

variable. It's commonly expressed in hexadecimal (e.g., 0x5A63).

• When a variable is declared in the program, the operating system is

requested to allocate a specific amount of memory, depending on the

variable's type. and returns the memory address for the variable's use.

The address
• To obtain the value of a variable: Simply write its name.

• To obtain its address (location in memory): in algorithm you put the

symbol ‘@’ before the name of the variable, and in C, you use the

reference operator "&" before the name of the variable.

Example :

write("value of age =", age , "its address =", @age)

printf("value of age = %d its address = %p ", age , &age);

• In C, `%p` is a format specifier used to print the value of a pointer,

typically an address. When you use `%p` with `&age`, it will print the

address of the variable `age` in hexadecimal.

• If you want to see the address in decimal, you can use `%d`.

• Note that the memory address of the `age` variable can vary each time

the program is run due to memory allocation by the operating system.

2. Pointers
A pointer is a variable whose value is a memory address.

The memory address stored in a pointer can point to either another variable or program.

Uses of Pointers:

• Passing Parameters by Address:

• Dynamic Memory Allocation:

• Recursive Type Definitions: such as linked lists, stacks, queues,….

• …

Nom de

variable

adresse

mémoire
Contenu

 0x0000

 0x0001

p 0x0002 0x0276

 0x0003

 … …

age 0x0276 19

 0x0277

 0x0278

Example :

• age: An integer variable its value 19.

• p: A pointer variable.

• The variable ‘age’ is located at the

memory address 0x0276 (16) or 630

(10).

• 'p holds the value 0x0276, which is the

memory address where the variable age

is stored. We say "p points to age“.

Declaration
• In algorithmic pseudocode, the pointer type is indicated with the caret symbol

(^) placed in front of the type. For example: `var p1, p2: ^type`.

• In C, the pointer type is indicated with the asterisk (*) placed before the

variable name. For example: `type *p1, *p2;`.

• The symbols (^ or *) indicate that the variable is of pointer type, representing

a memory address, while the type specifies the content type at that memory

location.

• It is a good practice to initialize pointers to NULL when they are declared. In

C, this is often done to indicate that the pointer is not currently pointing to a

valid memory location.

• In C, `NULL` is defined in `<stdio.h>`. The common definition is `#define

NULL 0`.

Example 1
Var x: integer p1, p2: ^integer

z: real pz : ^real

In C

int x, * p1, * p2;

float z, * pz ;

• p1 can take the address of x or the value of p2 but not the address of z nor the

value of pz nor the address of p2

Valid operations

p1 = &x; p2 = p1; pz = &z;

Invalid operations

p1 = x; x = p1; p1 = &z;

pz = p1; P2 = &p1; p1 = &(0x0276);

• You need to distinguish between the memory address stored in the pointer,

which points to another variable, and the memory address of the pointer itself,

representing the location where the pointer variable is stored.

Example 2
x is of integer type (int), and px contains the address of x, so its type is

(int*) and ppx contains the address of px, so its type is (int**) as shown

in the following diagram :

int** int* int

 5

ppx px x

Declaration :

int x,*px,**ppx ;

x=5;

px=&x ;

ppx =&px ;

Declaration using typedef :

typedef int* pint ;

typedef int** ppint ;

pint px ;

ppint ppx ;

Use
It is rare that memory addresses are manipulated directly like numbers. But,

we manipulate the addresses of existing variables.

In algorithm

• We use the @ operator before the variable name to retrieve its address.

• We use the ^ operator after the variable name to retrieve the value of the

variable (Dereference) from its address stored in a pointer.

In C,

• We use the & operator before the variable name to obtain its address.

• We use the * operator before the variable name to retrieve the value of

the variable from its address stored in a pointer.

• p  @x ⇒ p^ ⇔ x

• p=&x ⇒ *p ⇔ x

Example
int x,*p1,y,*p2;

x=3; y=4;

p1=&x ;

p2=&y ;

*p1=5;

p1=p2;

*p1=6;

 x 3 p1

y 4 p2

 x 3 p1

y 4 p2

 x 5 p1

y 4 p2

 x 5 p1

y 4 p2

 x 5 p1

y 6 p2

Algorithm exmpl

Var x, y: integer

p1, p2: ^ integer

begin

x 3

y 4

p1@x

p2@y

p1^ 5

p1 p2

p1^  6

Comments
• To understand pointers, you have to draw the variables. the pointer

carries an arrow towards the variable which holds its address.

NULL value

• While a pointer is always of a simple type, the variable whose

address it holds can be of a composite type, such as an array or

structure.

• Attempting to retrieve the value of an uninitialized or NULL pointer

can result in program termination. It is essential to assign a valid

value (variable address) to the pointer before attempting to access the

value it points to.

• Before retrieving the value indicated by the pointer, it is crucial to

verify that the pointer is not NULL.

passing parameters by address
void swap (int *x, int *y){

int t;

t= *x;

*x= *y;

*y=t;

}

int a=5,b=3;

swap(&a, &b);

 *x

a 3 &a x

b 5 &b y

 *y

3. Pointer operations
Suppose P and Q are two pointers and i is an integer

Op Type of the 2nd

operant

Type of result

+ int Pointer

P+i Returns a pointer to the i th element after P in an array

++ Pointer

P++ Returns a pointer to the immediately following element P in an array

- int Pointer

P–i Returns a pointer to the i th element before P in an array

-- Pointer

P-- Returns a pointer to the element immediately preceding P in an array

3. Pointer operations
Suppose P and Q are two pointers and i is an integer

Op Type of the 2nd

operant

Type of result

- Pointer of the

same type

int

P-Q Returns the number of elements between P and Q where P and Q must

point to the same array

== Pointer Boolean

P ==

Q

is true if P and Q have the same address, that is, they point to the same

location

!= Pointer Boolean

P != Q It is true if P and Q are different

* Value type

* P To retrieve the value whose address it contains

4. Dynamic memory management

• Static reservation involves the compiler automatically allocating

memory for declared variables, retained until the end of the program

or subprogram execution.

• Dynamic reservation occurs during program execution when a

specific amount of memory needs allocation. For example, to reserve

an array of ‘N’ elements, a pointer is declared, and when N is known,

the array is dynamically allocated.

• Developers use a set of functions to manage memory dynamically

during program execution, providing flexibility for memory allocation

and deallocation.

Algorithmic management
There are three procedures:

1. allocate () to reserve an array where it takes a pointer (array name) and the

number of elements

Syntax: allocate(arr_name, number_elements)

Example: allocate(t,10)

2. reallocate () allows you to modify the size of the array, whether to increase

or decrease it.

Syntax: reallocate(arr_name , new_size)

Example: reallocate(t,15)

3. deallocate () to remove the reserved array with allocate ()

Syntax: deallocate(arr_name)

Example: deallocate(t)

access
in algorithmic pseudocode, after creating an array 't' using the allocate()

function, its elements can be accessed either through square brackets []

or the fetch operation ^.

The pointer 't' holds the address of the first element, t[0] i.e.:

@t[0] t and t^ t[0]

@t[1] t+1 and (t+1)^ t[1]

For the general case of t[i]:

@t[i] (t+i) and (t+i)^ t[i]

Example 1/2

algorithme mémoire

var t : ^réel

 n :entier

t n

début

ecrire("entrer le nombre des

éléments")

lire(n)

t n

 3

allouer(t ,n) t

Example 2/2

t[0] 1 t[1] 2 t[2] 3

t^ 1 (t+1)^ 2 (t+2)^ 3

t

 1 2 3

reallouer(t,n+2) t

 1 2 3

t[3] 4 t[4] 5

 (t+3)^ 4 (t+4)^ 5

t

 1 2 3 4 5

désallouer(t) t n

 3

The “sizeof” operation
To find out the size of a type or variable in bytes

Example:

float t[20];

printf("char : %d bytes\n", sizeof (char));

printf("int : %d bytes\n", sizeof (int));

printf("double: %d bytes\n", sizeof (double));

printf("the size of t: %d bytes\n", sizeof (t));

printf("the size of t: %d bytes\n", 20* sizeof (float));

which displays on the screen

char : 1 bytes

int : 4 bytes

double: 8 bytes

the size of t: 80 bytes

the size of t: 80 bytes

Type change: type casting

To force the compiler to change the type of a specific value, we use the

following formula:

(type) expression

Example 1

int A=8,B=3;

printf("no casting %f \n", A/B);

printf("with casting %f \n",

(float) A/B);

Example 2

int x, *p1;

float y=2, *p2;

x=(int)y;

p2= &y ;

p1=(int*)p2;

printf("x=%d \n", x);

printf("*p2=%f \n",

*p2);

printf("*p1=%d \n",

*p1);

x y

2 2.0 *p2/*p1

p1 p2

MemoryManagement in C 1/2
Dynamic memory management in C is done using four functions

defined in the stdlib library:

1. malloc () ،(memory allocation to reserve memory. Takes the size in

bytes and returns a pointer to that address or NULL on failure.

Example

float *t;

t=(float *) malloc (10*sizeof(float));

t= (float*) malloc(10* sizeof(float));

Table

name

Convert to

pointer type

To reserve

painting

Number of

elements

The size of each

element

Type of each

element

NB : Pointer type conversion is not necessary in C++
t = malloc (10*sizeof(float));

Memory Management in C 2/2
2. The free() function is used to return the memory reserved by malloc back

to the system. It takes as input a pointer to memory that was previously

allocated. After calling free, it is recommended to assign NULL to the

pointer to avoid using a dangling pointer.

Example

free(t);

3. realloc(), to change the size of reserved memory

Example

t=(float*) realloc (t, 20*sizeof float);

4. The calloc() function is similar to malloc(); however, it initializes the

reserved memory with zeros. It requires the number of elements in the

array and the size of each element and returns a pointer to the allocated

memory..

Example

t=(float*) calloc (10,sizeof float);

Comments
• In the functions chapter, we learned that `void` in a function's return type

means the function returns nothing. However, `void*` signifies that the

function returns a pointer of undefined type.

• When working with `void*`, it's necessary to convert it to the desired pointer

type by placing the pointer type in parentheses before the `malloc`, `calloc`,

and `realloc` function names. This conversion is not required in C++.

• To use these functions, include the necessary libraries using :

• #include <stdlib.h>

• #include <alloc.h>

• When reserving memory, follow these steps:

1. Reserve memory with `malloc`.

2. Ensure the reservation process is successful by checking:

`if (pointer != NULL)`

3. When done using the reserved space, return the memory to the system

using: `free(pointer)`

Example
#include < stdio.h >

#include < stdlib.h >

int main(void) {

char *str;

str = (char *) malloc(4*sizeof char);

str[0]='A'; str[1]=‘D'; str[2]=‘S'; str[3]='\0’;

// Or

*str='A'; *(str+1)=‘D'; *(str+2)=‘S'; *(str+3)='\0’;

printf("String is %s\n Address is %p\n", str, str);

str = (char *) realloc (str, 5*sizeof(char));

str[3]='2'; str[4]='\0’;

// Or

*(str+3)='2'; *(str+4)='\0’;

printf("String is %s\n New address is %p\n", str, str);

free(str);

return 0;

}

Pointers and matrices in C 1/3
• Matrix in C is an array where each element is an array.

For example we will create a matrix M[3][4] with 3 rows and 4 elements in each row (4

columns).

• Suppose we have 3 arrays M0, M1, M2

float M0[4],M1[4],M2[4];

• These arrays can be created using pointers

float *M0, *M1, *M2;

M0=(float *) malloc (4*sizeof float);

M1=(float *) malloc (4*sizeof float);

M2=(float *) malloc (4*sizeof float);

• Note that M0, M1 and M2 are all of the same type (float *), so they can be replaced

by an array M of type (float *).

float* M[3];

for (int i=0;i<3;i++)

M[i]=(float *) malloc (4*sizeof float);

Pointers and matrices in C 2/3
Now the pointers can be used to create array M

C mémoire

float **M ; M

M=(float**) malloc(3*sizeof(float*));

 @ 0

M 1

 2

for(int i=0;i<3;i++)

 M[i]=(float*) malloc(4*sizeof(float));

 M 0 1 2 3

@ 0 @
 1 @

 2 @

using typedef

typedef float** matrix;

typedef float* array;

matrix M;

M=(matrix) malloc (3* sizeof array);

for (i=0;i<3;i++)

M[i]=(array) malloc (4*sizeof float);

Any element of the array can be accessed using [] or using the retrieval operator *

where

M[i][j] ⇔ *(M[i]+j)

M[i][j] ⇔ *(*(M+i)+j)

Note : A static array in C is a constant memory address that cannot be modified.

Example: int *p,t[10];

p=t; // Correct because t is the address of the first element

t=p; // Incorrect because t is a constant

Pointers and matrices in C 3/3

Memory management in C++
is done using two operators :

There are two syntaxes: one for simple types and one for arrays.

1. new : to reserve memory. returns a pointer to this address or NULL

on failure.

Example

float *p, *t;

p= new float;

t= new float[n];

2. delete : to return the memory reserved by new to the system.

Example

delete p;

delete []t;

End of part 1 of Chapter 03

