
Chapter 3: Part 3 
Pointers and Linked Lists

Algorithmics and data structure 2

Presented by : Dr. Benazi Makhlouf
Academic year : 2023/2024



Content of chapter 03 part 
3:

7. Doubly linked list

8. Special linked lists

1. Stacks

2. Queues



7. Doubly linked list
In addition to the data and the pointer that points to the next element, a

doubly linked list contains another pointer, usually called "prev", that points

to the previous element. This pointer makes it easy to navigate the list in both

directions and thus simplifies the process of deleting or inserting an element

before the selected one.



declaration

typedef struct Node {

int data ;

struct Node*next, *prev;

} Node;

"next" is a pointer that contains the address of the next element,

"prev" is a pointer that contains the address of the previous element.

The "prev" of the first element can be used to refer to the last element in the list, speeding

up the process of accessing the last element for addition or deletion.



Add an element at the beginning(head)

e->next = h ; // Change next from “e” so that it points to the first

e->prev = NULL;

if(h != NULL) // prev of the first element, if it exists, points to the new .

h->prev = e;

h =e; // the head of the list points to the new element

Delete the element from the beginning(the 

head)
t = h ; // Store the address of the element to delete

h =t->next; // Bind with the second element

if(h != NULL)

h->prev = NULL;

delete t; // Empty reserved memory



Add an element at the end

e->next = NULL; // because it will be the last

if(h == NULL) {

e->prev = NULL;

h = e;

}

else {

t= h ;

while(t-> next != NULL) // the last element is searched

t= t->next;

e-> prev = t; //connect the new one with the last one

t->next=e;

}



Remove an item from last

t = h ;

while(t->next != NULL) // the last element is searched

t= t->next;

p=t->prev; // get the address of the before last

p ->next=NULL; // become the last

delete t;



8. Special linked lists

In addition to single and double linked lists, there 

are circular single and double linked lists. A 

circular list is similar to a normal linked list, with 

the distinction that the last element does not have a 

NULL reference but instead points to the first 

element of the list.



8.1. Stacks:
Stack:

• An abstract data structure consisting of a set of records of the same type.

• The two fundamental operations are 'push'(to add items to the stack) and 'pop'(to 

remove items from the stack).

• Operations take place at a single end of the group, referred to as the top.

• The data structure follows the LIFO(Last In, First Out) principle.

• The last item added is the first to be removed, and the output order is the reverse of the 

input order.

• Can be implemented using arrays or linked lists.

Examples:

• Web browser history

• The list of operations in Word to be undone as items.



8.1.1. Using arrays
typedef struct Stack {

int *item;

int top, capacity ;

} Stack;

Stack init(int size) {

Stack s;

s.top = 0;

s.capacity = size ;

s.item =new int[size];

return s;

}

1. Declaration : A structure is created that

contains a dynamically allocated item table,

a 'top’ field representing the position for

addition or deletion, and a 'capacity'

variable indicating the size."

2. init(): The array is

created and top is

assigned the value 0 to

indicate that the stack

is empty.



bool isEmpty(Stack s){

return s.top ==0;

}

3. isEmpty():The stack is empty if

the value of ‘top’ is 0.

4. isFull(): If the array is 

full, ‘top’ equals 

‘capacity’ .

bool isFull(Stack s){

return s.top == s.capacity;

}



int Pop(Stack &s){

int x;

if(isEmpty(s)){

printf("error: Stack is empty");

return -1;

}

s.top--;

x= s.item[s.top];

return x;

}

5. Pop(): The Pop function

decrements 'top' and returns the

last element it points to.



void Push(Stack &s, int x){

if(isFull(s)){

printf("error: Stack is full");

return;

}

s.item[s.top]=x;

s.top++;

}

6. Push(): The Push function adds

the element 'x' to the table and

increments the 'top' pointer by

1. It is important to ensure that

the stack(table) is not full

before performing the

operation.



8.1.2. Using linked lists:
To simulate a stack using lists, the addition and removal must be done on the same side(at the

beginning or at the end).

void Push(List &l , int x) {

List e = new Node;

e->data = x;

e->next = l ;

l =e;

}

1. Push(): The push function

is the same as the add_head

function



2. Pop(): The pop function is

the same as the delete_head

function except that the pop

function returns the element

that was deleted. So before

deleting the first element t,

we save t->data in x, then

delete it and return the value

of x.

int Pop(List &l) {

List t; int x;

if(l==NULL){

printf("error: Stack is empty");

return -1;

}

t = l;

l =t->next;

x=t->data;

delete t;

return x;

}



8.2. The Queue
Queue:

• An abstract data structure for storing records of the same type.

• Supports two fundamental operations:

• Adding a new element(enQueue or enfil).

• Deleting an element(deQueue or scroll).

• Follows the FIFO(First In, First Out) property.

• The first element added is the first element to be deleted.

• Output order matches the input order.

• Can be implemented using arrays or linked lists.

Example : list of events, list of files sent to the printer...



8.2.1. Using linked lists:
To simulate a queue using lists, you perform additions and removals at two different ends of the list. 

Specifically:

• Add new elements at the end of the list.

• Delete elements from the beginning of the list.

Alternatively, this approach can be reversed by:

• Adding items at the beginning of the list.

• Removing items from the end of the list.

The list structure allows for quick and efficient insertions and deletions, without requiring costly 

element moves, as is the case with array implementations.

1. declation : We create a structure that contains

two fields, the first refers to the first element of

the list and the second to the last element of the

list.

typedef struct {

struct Node *first, *last;

int size;

} Queue;



Queue initQ(){

Queue Q;

Q.first =NULL;

Q.last =NULL;

Q.size =0;

return Q

}

initQ() initializes the queue by assigning NULL to the first and last fields of the 

structure.

bool isEmpty(Queue Q){

return Q.size ==0;

}



void enQueue(Queue &Q, int x) {

Node *e = new Node;

e->data = x;

e->next = NULL;

if(isEmpty(Q))

Q.first =e;

else

Q.last ->next =e;

Q.last =e;

Q.size++;

}

enQueue():is the same as “ append_end ”

int deQueue(Queue &Q) {

Node*t; int x;

if(isEmpty(Q)){

printf("error: is empty");

rturn -1;

}

t = Q.first ;

x = t ->data;

Q.first = t->next;

delete t;

Q.size--;

if(Q.size ==0) Q.last =NULL;

return x;

}

deQueue():is the same as “ delete_head”



8.2.2. Using arrays
1. Declaration : Creating a structure that includes 

a dynamically allocated table of elements in 

memory, a 'start' location for additions, an 'end' 

location for deletions, and 'capacity,' which 

indicates the maximum number of elements 

that can be added to the table.

typedef struct {

int *item;

int start, end, capacity;

} Queue;

Queue init(int size) {

Queue Q;

Q.start = -1;

Q.end = -1;

Q.capacity = size;

Q.item = new int[size];

return Q;

}

2. init(): Creates the table and sets 

start and end to -1 to indicate that 

the queue is empty. If the creation 

fails, the function returns false.



bool isEmpty(Queue Q){

return Q.start ==-1 && Q.end ==-1;

}

bool isFull(Queue Q){

return(Q.start+1) % Q.capacity == Q.end;

}

3. isEmpty(): checking if the 

queue is empty by 

comparing if start =-1

4. isFull(): Checks if the queue is 

full by comparing whether the 

value of(start + 1) modulo the 

capacity is the same as the 

value of end using the mod "%" 

operation to handle the case 

where the queue wraps around 

to the start.



5. enQueue(): Checks if the queue is 

not full, then adds 1 to start to 

reference the first empty element 

and adds x to the table.

void enQueue(Queue &Q,int x){

if(isFull(Q)){

printf("error: Queue is full");

return;

}

if(isEmpty(Q)) Q.end =0;

Q.start=(Q.start+1) % Q.capacity;

Q.item[Q.start]=x;

}



6. deQueue(): returns the first element

of the table pointed to by end, If the

queue is empty, it informed the user.

If the queue becomes empty, put -1

in start otherwise add 1 to end.

int deQueue(Queue &Q) {

if(isEmpty(Q)) {

printf("error: Queue is empty");

return -1;

}

int x = Q.item[Q.end];

if(Q.start == Q.end)

Q.start = Q.end = -1;

else

Q.end =(Q.end + 1) % Q.capacity;

return x;

}



End of Chapter 03


