University of M 'sila

First Series Of Exercises - Phys 02

Exercise 01:

In an orthonormal base $(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{J}}, \overrightarrow{\boldsymbol{k}})$, we give the scalar function $\boldsymbol{F}(x, y, z)=\mathbf{3 y} \boldsymbol{x}^{2}-\boldsymbol{y}^{\mathbf{3}} \mathbf{z}^{2}$
1/ Determine the partial derivatives $\frac{\partial F}{\partial x} ; \frac{\partial F}{\partial y} ; \frac{\partial F}{\partial z}$ of \boldsymbol{F}.
2/ Deduce the gradient of the function $\boldsymbol{F}(x, y, z)(\overrightarrow{\boldsymbol{\nabla}} \boldsymbol{F})$ at the point $\boldsymbol{P}(\mathbf{1},-\mathbf{2},-\mathbf{1})$.
$\mathbf{3} \%$ Determine the normal to the surface $\boldsymbol{F}(x, y, z)=\mathbf{0}$ at the point $\boldsymbol{Q}(\mathbf{1}, \mathbf{1}, \mathbf{1})$.
$\mathbf{4 \%}$ Determine the directional derivative at the point $\mathbf{Q}(\mathbf{1}, \mathbf{1}, \mathbf{1})$ in the direction $\overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{\imath}}-\overrightarrow{\boldsymbol{\jmath}}-\overrightarrow{\boldsymbol{k}}$.

Exercise 02:

Let the vector function $\overrightarrow{\boldsymbol{G}}(x, y, z)=\boldsymbol{x y z} \overrightarrow{\boldsymbol{\imath}}+\mathbf{3} \boldsymbol{x}^{2} \boldsymbol{y} \overrightarrow{\boldsymbol{\jmath}}+\left(\boldsymbol{x} \mathbf{z}^{\mathbf{2}}-\boldsymbol{y}^{2} \mathbf{z}\right) \overrightarrow{\boldsymbol{k}}$
$\mathbf{1 / C a l c u l a t e ~ t h e ~ d i v e r g e n c e ~ o f ~ t h e ~ f u n c t i o n ~} \overrightarrow{\boldsymbol{G}}(x, y, z)(\overrightarrow{\boldsymbol{\nabla}} \circ \overrightarrow{\boldsymbol{G}})$ at the point $\boldsymbol{P}(\mathbf{2},-\mathbf{1}, \mathbf{1})$.
$\mathbf{2 \%}$ Calculate the rotational of the function $\overrightarrow{\boldsymbol{G}}(x, y, z)(\overrightarrow{\boldsymbol{\nabla}} \wedge \overrightarrow{\boldsymbol{G}})$ at the point $\boldsymbol{P}(\mathbf{2},-\mathbf{1}, \mathbf{1})$.
$\mathbf{3} \%$ Give the value of " \boldsymbol{a} " so that the vector function $\overrightarrow{\boldsymbol{A}}=(\mathbf{2 x}-\boldsymbol{y}) \overrightarrow{\boldsymbol{i}}+(\mathbf{z}+\boldsymbol{y}) \overrightarrow{\boldsymbol{\jmath}}+(\mathbf{1}-\boldsymbol{a}) \mathbf{z} \overrightarrow{\boldsymbol{k}}$ will be solenoidal field.

4/ What are the values $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$ for the vector field $\overrightarrow{\boldsymbol{B}}$ to be irrotational We give: $\overrightarrow{\boldsymbol{B}}=(\mathbf{2 z}+\boldsymbol{a y}) \overrightarrow{\boldsymbol{\imath}}+(\boldsymbol{x}-\boldsymbol{b z}) \overrightarrow{\boldsymbol{\jmath}}+(\boldsymbol{y}+\boldsymbol{c x}) \overrightarrow{\boldsymbol{k}}$

Exercise 03:

Let the vector function $\overrightarrow{\boldsymbol{r}}(x, y, z)=\boldsymbol{x} \overrightarrow{\boldsymbol{\imath}}+\boldsymbol{y} \overrightarrow{\boldsymbol{\jmath}}+\mathbf{z} \overrightarrow{\boldsymbol{k}}$, which is the vector position $\mathbf{1 / S h o w}$ that $\overrightarrow{\boldsymbol{\nabla}}(\boldsymbol{r})=\frac{\vec{r}}{r}=\overrightarrow{\boldsymbol{u}}_{\boldsymbol{r}}\left(\overrightarrow{\boldsymbol{u}}_{\boldsymbol{r}}\right.$ is the unit vector of $\left.\overrightarrow{\boldsymbol{r}}\right)$.
$\mathbf{2} \%$ Show that $\overrightarrow{\boldsymbol{V}}\left(\boldsymbol{r}^{\boldsymbol{n}}\right)=\boldsymbol{n} . \boldsymbol{r}^{(\boldsymbol{n}-2)} \overrightarrow{\boldsymbol{r}}$. From this, deduce the gradient of $\frac{\mathbf{1}}{\boldsymbol{r}}$.
$\mathbf{3}$ \% Show that $\vec{\nabla} \wedge\left(\frac{\vec{A} \wedge \vec{r}}{r^{n}}\right)=\frac{2-n}{r^{n}} \overrightarrow{\boldsymbol{A}}+\frac{n}{\boldsymbol{r}^{(n+2)}}(\overrightarrow{\boldsymbol{A}} \circ \overrightarrow{\boldsymbol{r}}) \overrightarrow{\boldsymbol{r}}$. With $\overrightarrow{\boldsymbol{A}}$ is a constant vector.

Exercise 04: (Additional)

$\mathbf{1} \%$ Check STOKES's theorem for the vector field $\overrightarrow{\boldsymbol{A}}$ for the area
of the triangle in Figure 5.1.: $\overrightarrow{\boldsymbol{A}}=\boldsymbol{x y} \overrightarrow{\boldsymbol{\imath}}+\mathbf{2 y z} \overrightarrow{\boldsymbol{\jmath}}+\mathbf{3 x z} \overrightarrow{\boldsymbol{k}}$

$\mathbf{2 \%}$ Check GAUSS's theorem the vector field $\overrightarrow{\boldsymbol{B}}$ for the northern hemisphere of the sphere of radius \boldsymbol{R} delimited by the equatorial plane. (Figure 5.2) $\vec{B}=r \cdot \cos (\theta) \overrightarrow{\boldsymbol{u}}_{r}+r \cdot \sin (\theta) \overrightarrow{\boldsymbol{u}}_{\theta}+r \cdot \sin (\theta) \cdot \cos (\varphi) \overrightarrow{\boldsymbol{u}}_{\varphi}$ (We give: $\nabla \circ \overrightarrow{\boldsymbol{A}}=\frac{1}{r^{2}} \cdot \frac{\partial\left(r^{2} A_{r}\right)}{\partial r} \overrightarrow{\boldsymbol{u}}_{r}+\frac{1}{r \sin \theta} \cdot \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial A_{\varphi}}{\partial \varphi} \overrightarrow{\boldsymbol{u}}_{\varphi}$)

Exercise 05: (Additional)

Fig. 5.2

Bearing in mind that $\left\{\begin{array}{l}\operatorname{div}(\vec{a} f)=f \operatorname{div}(\vec{a})+\vec{a} \circ \overrightarrow{\operatorname{grad}}(f)=\nabla \circ(\vec{a} f(r))=f \nabla \circ \vec{a}+\vec{a} \circ \nabla f \\ \overrightarrow{\operatorname{rot}}(\vec{a} f)=f \overrightarrow{\operatorname{rot}}(\vec{a})+\vec{a} \wedge \overrightarrow{\operatorname{grad}}(f)=\nabla \wedge(\vec{a} f(r))=f \nabla \wedge \vec{a}+\vec{a} \wedge \nabla f\end{array}\right.$
$\mathbf{1}^{\circ}$ - Show that $\boldsymbol{\nabla} \wedge(\overrightarrow{\boldsymbol{r}} \boldsymbol{f}(\boldsymbol{r}))=\mathbf{0}$
2° - Show the following equalities: $\left.\overrightarrow{\boldsymbol{r o t}} \equiv \vec{\nabla} \wedge ; \overrightarrow{\boldsymbol{g r a d}} \equiv \vec{\nabla} ; \operatorname{div} \equiv \vec{\nabla} \circ ; \Delta \equiv \vec{\nabla} \circ \vec{\nabla}\right)$

- $\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{grad}})=0 ; \quad \operatorname{div}(\overrightarrow{\operatorname{grad}})=\Delta ; \quad \operatorname{div}(\overrightarrow{r o t})=0$
- $\vec{\nabla} \wedge(\vec{\nabla} \wedge \vec{A})=\vec{\nabla}(\vec{\nabla} \circ \vec{A})-\Delta \vec{A}, \quad \vec{\nabla} \circ(\vec{A} \wedge \vec{B})=\vec{B} \circ \vec{\nabla} \wedge \vec{A}-\vec{A} \circ \vec{\nabla} \wedge \vec{B}, \quad \vec{\nabla}(U V)=V \vec{\nabla} U+U \vec{\nabla} V$
- $\vec{\nabla}(\vec{A} \circ \vec{B})=\vec{A} \wedge(\vec{\nabla} \wedge \vec{B})+\vec{B} \wedge(\vec{\nabla} \wedge \vec{A})+(\vec{B} \circ \vec{\nabla}) \vec{A}+(\vec{A} \circ \vec{\nabla}) \vec{B}$
- $\vec{\nabla} \wedge(\vec{A} \wedge \vec{B})=\vec{A}(\vec{\nabla} \circ \vec{B})-(\vec{A} \circ \vec{\nabla}) \vec{B}+\vec{B}(\vec{\nabla} \circ \vec{A})-(\vec{B} \circ \vec{\nabla}) \vec{A}$

Exercise 06 : (MD)

- Let the function $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x y}$,
$\mathbf{1}^{\circ}$ - Calculate the surface integral in the domain $\boldsymbol{x}=\mathbf{0}, \boldsymbol{x}=\boldsymbol{a}$ and $\boldsymbol{y}=\mathbf{0}, \boldsymbol{y}=\boldsymbol{x}$.
- If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{1}$,
$\mathbf{2}^{\circ}$ - Calculate its integral on the surface of a sphere of radius " \boldsymbol{R} "
$\mathbf{3}^{\circ}$ - Calculate its integral on the volume of a sphere of radius " \boldsymbol{R} "
- Given the vector $\overrightarrow{\boldsymbol{A}}=\boldsymbol{a} \overrightarrow{\boldsymbol{r}}$ of spherical symmetry.

1/ What is its flow through a sphere of radius ' \boldsymbol{R}^{\prime} ? (Use GAUSS's theorem).
$\mathbf{2 \%}$ What is the path (curvilinear) integral along a circular curve of equation $\boldsymbol{x}^{2}+\boldsymbol{y}^{\mathbf{2}}=\boldsymbol{a}^{\mathbf{2}} ; \mathbf{z}=\mathbf{0}$ if the field is a function $\overrightarrow{\boldsymbol{A}}(x, y, z)=\boldsymbol{\operatorname { s i n }}(\boldsymbol{y}) \overrightarrow{\boldsymbol{\imath}}+\boldsymbol{x}(\mathbf{1}+\boldsymbol{\operatorname { c o s }}(\boldsymbol{y})) \overrightarrow{\boldsymbol{\jmath}}$.
(Use STOKES's theorem).

