University of M 'sila

Second Series Of Exercises - Phys 02

Exercise 01: Fig. 01

In the figure below, bodies are charged with different charge distributions.
Calculate the whole charge for
$\mathbf{1 /} A$ half thin ring of radius \boldsymbol{R} with line distribution of linear charge density $\left.\boldsymbol{\lambda}=\boldsymbol{\lambda}_{\mathbf{0}} \boldsymbol{\operatorname { s i n }} \boldsymbol{\operatorname { l n }} \boldsymbol{\theta}\right)$
2/A cylinder of radius \boldsymbol{R} and Hight \boldsymbol{H} with uniform surface distribution of charge density $\boldsymbol{\sigma}$.
$\mathbf{3} \%$ A Cone of radius \boldsymbol{R}, Hight \boldsymbol{H} with uniform volume distribution of charge density $\boldsymbol{\rho}$
$\mathbf{4} \% A$ sphere of radius \boldsymbol{R}, with a volume distribution of density of charge density $\boldsymbol{\rho}=\frac{\boldsymbol{a}}{\boldsymbol{r}}$.

fig. 01

Exercise 02: Fig. 02

Two point charges ' $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{9} \boldsymbol{\mu} \mathbf{C}$ and $\boldsymbol{Q}_{\mathbf{2}}=-\mathbf{1} \boldsymbol{\mu} \boldsymbol{C}$ aligned and separated by a distance ' $\boldsymbol{d}=\mathbf{1 0} \mathbf{~ c m}$ '

1 -What is the force exerted by each of these charges on the other?
$\mathbf{2}^{\circ}-\boldsymbol{a}-$ Sketch, in which zone (left to $\boldsymbol{Q}_{\mathbf{1}}$, or between $\boldsymbol{Q}_{\mathbf{1}}$ and $\boldsymbol{Q}_{\mathbf{2}}$, or right to \boldsymbol{Q}_{2}) a $3^{r d}$ charge $\boldsymbol{Q}_{\mathbf{0}}>\mathbf{0}$ to be placed such that it be in equilibrium
\boldsymbol{b} - Determine this distance ' \boldsymbol{x} ' from the charge $\boldsymbol{Q}_{\mathbf{2}}$.
$\mathbf{3}^{\circ}$ - If one of them have a charge \boldsymbol{Q}, what is the charge of the second one, such that the force between these two charges will be maximal?

Exercise 03:

Three point charges, $\boldsymbol{Q}_{\mathbf{1}}(0,0,0)=2 \mu \boldsymbol{C}, \boldsymbol{Q}_{\mathbf{2}}(\mathbf{0}, \boldsymbol{a}, \mathbf{0})=\mathbf{8} \boldsymbol{\mu} \boldsymbol{C}$ and $\boldsymbol{Q}_{\mathbf{3}}(\mathbf{0}, \mathbf{0}, \boldsymbol{a})=-\mathbf{4} \boldsymbol{\mu} \boldsymbol{C}$ (the unit of distance is cm), are placed at the vertices of an isosceles right triangle of side " \boldsymbol{a} ".
$\mathbf{1}^{\circ}$ - What is the force due to $\boldsymbol{Q}_{1}, \boldsymbol{Q}_{2}$, and \boldsymbol{Q}_{3} on $\boldsymbol{Q}_{4}(\mathbf{0}, \boldsymbol{a}, \boldsymbol{a})=-6 \boldsymbol{\mu}$?
2° - What is the field due to these 4 charges at the center of the square formed?

Exercise 04:

A ring of radius \boldsymbol{R} has a uniform distribution of charge of density λ.
$\mathbf{1}^{\circ}$ - What is the force exerted by this ring on the charge $-\boldsymbol{Q}$ located at the distance \boldsymbol{x} from the center and along its axis?
$\mathbf{2}^{\circ}$ - What is the force if the charge $-\boldsymbol{Q}$ is at the center of the ring?
$3^{\circ}-$ What is the nature of the motion of the charge $-\boldsymbol{Q}$ if it is moved away from the center by a small distance \boldsymbol{x} along the axis compared to its radius $\boldsymbol{R}(\boldsymbol{x} \ll \boldsymbol{R})$?

Exercise 05: (Additional)

Two identical copper pieces, each with a mass $\boldsymbol{m}=\mathbf{2 . 5} \boldsymbol{g}$, containing $\boldsymbol{N}=2022$ atoms. We remove \boldsymbol{n} electrons from each piece, then one is placed on a horizontal table and the other just above it at a distance $\boldsymbol{d}=\mathbf{1} \boldsymbol{m}$ where it remains at rest.
$\mathbf{1}^{\circ}$ - What is the charge \boldsymbol{Q} of each piece maintaining this configuration?
$\mathbf{2}^{\circ}$ - What is the number \boldsymbol{n} of electrons removed from each piece?

3° - What is the portion of copper whose atoms have lost their electrons (assuming each atom loses only one electron)?

Exercise 06: (Additional)

Four identical point charges ' $-\boldsymbol{Q}^{\prime}$ placed at the vertices ' \boldsymbol{A}^{\prime}, ' \boldsymbol{B}^{\prime}, ' \boldsymbol{C}^{\prime} and 'D' of a square of side ' \boldsymbol{a}^{\prime}. Another charge ' $\boldsymbol{Q}_{\mathbf{0}}>\mathbf{0}^{\prime}$ ' fixed at the center' \boldsymbol{O} ' of this square.
$\mathbf{1} \%$ Express $\boldsymbol{Q}_{\mathbf{0}}$ in terms of the charge \boldsymbol{Q} such that the system will be in electrostatic equilibrium (the total force acting on each of the charges is zero).
 If we move the charge $\boldsymbol{Q}_{\mathbf{0}}$ and then fix it at point $\mathbf{P}(\mathbf{0}, \mathbf{0}, \boldsymbol{a} \sqrt{\mathbf{2}})$ just above the center " \mathbf{O} '.
$\mathbf{2 \%}$ What is the force exerted by the charges at the vertices on the charge $\mathbf{Q}_{\mathbf{0}}$ at point ' \mathbf{P} '?
3% Deduce the electric field created by the $\mathbf{4}$ charges at the vertices at point ' P '.

Exercise 07 (Additional)

Three charges $\boldsymbol{q}_{1}=\boldsymbol{Q}, \boldsymbol{q}_{2}=\mathbf{3 Q}$ and $\boldsymbol{q}_{3}=+\mathbf{2 Q}$ are arranged on the vertices of an equilateral triangle of side \boldsymbol{a}.

Given $\boldsymbol{Q}=+\mathbf{2} \times \mathbf{1 0}^{-6} \boldsymbol{C}$ and $\boldsymbol{a}=\mathbf{3} \times \mathbf{1 0}^{-\mathbf{2}} \boldsymbol{m}$ in the base (\vec{i}, \vec{j})

1. Write the position vectors for each charge
2. Write the unit vectors for the lines joining the charges

3. Represent and determine the electric forces applied by each of these charges on the charge \boldsymbol{q}_{3}.
4. Determine the total force acting on \boldsymbol{q}_{3}.
5. Deduce the components of the electric field vector $\overrightarrow{\boldsymbol{E}}$ and its intensity.

Exercise 08: (HW)

Three particles each of mass $\boldsymbol{m}=\mathbf{1} \boldsymbol{g}$, carrying a charge \boldsymbol{q}. Are suspended from a common point \boldsymbol{P}, by three insulating massless strings, each l=10 cm long.

If the particles are in equilibrium and located at the corners of an equilateral triangle of side length $\boldsymbol{a}=\mathbf{3} \mathbf{~ c m}$ Calculate the charge \boldsymbol{q} of each particle.

