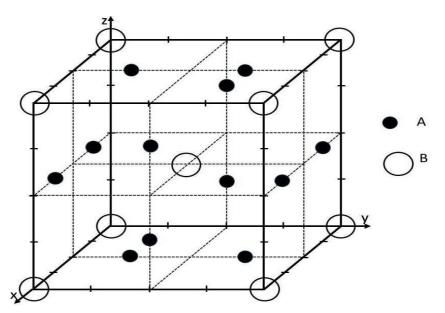

Exercices de Physique des semi-conducteurs

Exercice 1


Le cobalt cristallise sous les deux forms: cubique a faces centrées et hexagonale compact. figure ci-dessous, est représentée une vue en perspective de la forme cubique a faces centrées.

- 1- Calculer le nombre d'atomes
- 2- Donner les coordonnées réduites des atomes de cobalt dans cette structure

Exercice 2

Un solide intermétallique de formule A_xB_y cristallise dans un système cubique de paramètre a égale à 5,29 Å. La figure suivante représente la maille en perspective.

- 1- Donner les coordonnées réduites des atomes A et B
- 2- Calculer le nombre d'atomes de A et de B dans la maille.
- 3- En déduire le nombre de motifs par maille.

Exercice 3

Dans un système cubique centré, avec un paramètre de maille ($\mathbf{a} = \frac{4}{\sqrt{3}} \mathbf{R}$ et R le rayon atomique).

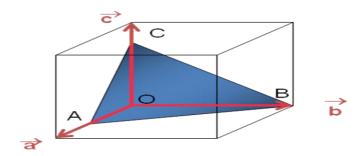
- Trouver la coordinence (nombre d'atome dans la maille).
- Calculer la compacité.

Exercice 4

Dans un système cubique à faces centrées, avec un paramètre de la maille a

- Trouver la coordinence (nombre d'atome dans la maille).
- Calculer la compacité (rayon atomique $\mathbf{a} = \frac{4}{\sqrt{3}} \mathbf{R}$).

Exercice 5


La structure cristalline de type diamant comporte : 8 atomes aux coins, partagés par 8 mailles ,6 atomes au centre des 6 faces, partagés par 2 mailles et 4 atomes à l'intérieur du cube.

Le paramètre de la maille : $\mathbf{a} = \frac{8}{\sqrt{3}} \mathbf{R}$

- Trouver la coordinence.
- Calculer la compacité

Exercice 6

Trouver les indices de Miller (hkl), de la face représentée sur la figure

Exercice 7

Déterminer la valeur en degrés de l'angle de diffraction θ de Bragg par réflexion sur les plans d'équidistance d, d'indices de Miller (111) dans un cube. On donne: a = 3,60 Å et $\lambda = 0,710$ Å.

M.SALMI

Exercice 8

La structure crystalline du platine est cubique à faces centrées. Sa masse volumique est ρ et sa masse molaire M

- Calculer le paramètre a de la maille cubique

A.N:
$$\rho = 21370 \text{ kg m}^{-3} \text{ et M} = M = 195,1 \text{ g mol}^{-1}$$

Exercice 9

On donne le tableau suivant :

	Eg [eV]	N _c [atomes/cm3]	N _v [atomes/cm3]
AsGa	1,43	4,7.10 ¹⁷	7.10^{18}
Ge	0,70	1,04.10 ¹⁹	6.10^{18}
Si	1,12	2,81.10 ¹⁹	1,83.10 ¹⁹

Constante de Boltzman : $k = 8.62 \cdot 10^{-5} \text{ eV/K} = 1.38 \cdot 10^{-23} \text{ J}$

- 1. Parmi ces trois semi-conducteurs, quel est celui qui présente la concentration intrinsèque la plus faible ?
- 2. Calculer ni pour ce semi-conducteur à 300 K.

Exercice 10

Calculer la densité de porteurs dans le germanium intrinsèque, le silicium et

l'arséniure de gallium à 300, 400, 500 et 600 K.

Exercice 11

Dans le cas du Silicium, à T = 300 K, avec $ni = 1,5.10^{10}$ cm⁻³, nombre total d'atomes par cm³ = 5.10^{22} .

- 1. Quel est le rapport du nombre d'atomes ionisés au nombre total d'atomes ?
- 2. Quelle est la largueur de la bande interdite en eV ?

 $N_C = 3.10^{19}$. $(T/300)^{3/2}$ atomes/cm³ et $N_V = 10^{19}$. $(T/300)^{3/2}$ atomes/cm³

Exercice 12

On considère une jonction PN abrupte en silicium de surface $S=4.0\ 10^{-3}\ cm^2$ réalisée de la façon suivante : a- une région P dopée à $5.0\ 10^{16}\ cm^{-3}$ atomes accepteurs.

b- une région N dopée à 1.0 10^{15} cm⁻³ atomes donneurs.

On suppose que la température ambiante est telle que : $k_BT = 1/40 \text{ eV}$.

On donne pour le silicium à la température T :

 $n_i{}^2(T\)=5.0\ 10^{31}\ m^{\text{-}6}.$ - Hauteur de la bande interdite : $E_g=1.12\ eV.$

Mobilité des porteurs négatifs : $\mu_n(T$) = 1.5 $10^3 \ cm^2.V^{\text{--}1}.s^{\text{--}1}.$

mobilité des porteurs positifs : $\mu_p(T) = 4.5 \ 10^2 \ cm^2.V^{\text{--}1}.s^{\text{--}1}$.

Permittivité du silicium : ε = 1.0 10⁻¹² F./cm.

- 1- Calculer le potentiel de la jonction PN.
- 2- Calculer l'épaisseur de la zone de charge d'espace.

M.SALMI