
CHAPTER 1

THE FINITE EXPANSIONS

1.1 Londau Notation
Definition 1.1.1 let x0 ∈ R et f, g tow continuous functions defines in the neighborhood to
x0. We say that f is negligible compared to g around to x0 if lim

x→x0

f(x)
g(x) = 0.

We note f << g (notation de Hardy) or f = o(g) (notation de Londau)

Remark 1.1.2 1. f = o(1) ⇒ lim
x→x0

f = 0.

2. fRg ⇔ f = o(g) is not equivalent relation (because it is transitive, but not reflexive
and not symmetric).

3. Si α < β ⇒ xα = o(xβ).

Theorem 1.1.3 Let x0, λ ∈ R and f, g and h three functions defined around to x0 then:

1. f = o(h) and g = o(h) ⇒ f + λg = o(h).

2. f = o(h) ⇒ f.g = o(hg).

3. f is bounded and g tends to infinity, then f = o(g).

Definition 1.1.4 The finite expansions essentially to find a polynomial approximation to a
more complicated function in the neighborhood of a some point. They have numerous appli-
cations in other sciences, but also in mathematics itself, particularly in numerical analysis.

Definition 1.1.5 We said that f : I → R, is represented by the polynomial approximation
of degree n, for x near to x0 ∈ I if and only if there exist a polynomial P ∈ Rn[X], such that

∀x ∈ I : f(x) = P (x − x0) + o(x − x0)n.

We call P (x−x0) is the mean part of the finie expansions and o(x−x0)n is the remainder
part (or, rest) of degree n.
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1.2 Taylor formula (or:Taylor polynomial of degree n)
The approximations of the function f by the Taylor polynomial of degree n, denoted by
P (x − x0) for x near x0 using more derivatives f ′(x), f ′′(x), ..., fn(x) is given by

f(x) = f(x0) + f ′(x0)
1! (x − x0) + f ′′(x0)

2! (x − x0)2 + ... + f (n)(x0)
n! (x − x0)n + O(x − x0)n

Particular case. if x = 0.

f(x) = f(0) + f ′(0)
1! x + f ′′(0)

2! x2 + ... + f (n)(0)
n! xn + O(xn)

with ϵ(x) −→ 0 quand x 7−→ x0. This formula is called the formula of Mac-Laurin

Example 1.2.1 We will write the Mac-Laurin formula of the function cos : x 7→ cos x near
to 0. of degree n

cos′ x = − sin x,

cos′′ x = − cos x,

cos(3) x = sin x,

cos(4) x = cos x,

cos(5) x = − sin x,

cos(5) x = − cos x,

It’s easy to find that,
cos(n)(x) = cos(x + nπ

2 )

Then
cos x = 1 − x2

2! + x4

4! − x6

6! + x8

8! + ... + (−1)n x2n

(2n)! + O(xn)

The polynomial approximation of the function cos of degree 4 is

cos x = 1 − x2

2! + x4

4! + O(x4),

The polynomial approximation of degree 5 is given by:

cos x = 1 − x2

2! + x4

4! + O(x5),

The first statement informs us that there are terms of order x4 in the expansion. The second
statement is stronger as it informs us that there are no terms of order x5.

Definition 1.2.2 (Finite expansions at zero) Let f be a real valued function. We said
that the function f is represented by a finite expansion at zero if there exist real numbers
a0, a1, ...an and a real valued function ϵ such that

f(x) = a0 + a1x + a2x
2 + ... + anxn + xnϵ(x), lim

x→0
ϵ(x) = 0.

Then the function f is represented by the polynomial approximation of degree n, denoted
by Pn(x) for x near zero, which is called the main part of finite expansions at zero, such
that: Pn(x) = a0 + a1x + a2x

2 + ... + anxn
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Remark 1.2.3 Note that: xnϵ(x) = O(xn)

Using the euclidean division by increasing power order, one has the finite expansion at
zero of

f(x) = 1
1 − x

= 1 + x + x2 + x3 + ... + xn + xn+1

1 − x
= 1 + x + x2 + x3 + ... + xn + xn( x

1 − x
)

in this case ϵ(x) = x

1 − x
. We generally do not try to determine the function ϵ(x).

1.2.1 Properties
• If the function f can be expanded at zero, then this expansion is unique.

• If the function f can be expanded at zero, then lim
x→0

f(x) = a0. This criterion is generally
used to demonstrate that a function does not admit an expansion.

• If the function f can be expanded at zero, and if f is even (resp. odd) the polynomial
approximation Pn(x) is even (resp. odd)
In fact:
f represented by finite expansion at x0, f(x) = a0 + a1x + a2x

2 + ... + anxn + xnϵ(x)
so f(−x) = a0 − a1x + a2x

2 + ... + (−1)nanxn + xnϵ(x)
⋆ If f is odd: f(−x) = −f(x) = −a0 − a1x − a2x

2 − ... − anxn − xnϵ(x), then
a0 = a2 = a4 = ... = a2k = 0, 2k ≤ n.

⋆ If f even f(−x) = f(x) then a1 = a3 = a5 = ... = a2k+1 = 0, 2k + 1 ≤ n.

1.3 Finite expansions of elementary functions
The function defined by: f(x) = ax, a > 0. We have ax = ex ln a and the n-th derivative of f
is (ax)(n) = (ln a)nex ln a. So the finite expansions of this function is given by

ax = 1 + (ln a)x + (ln a)2

2! x2 + ... + (ln a)n

n! xn + xnϵ(x)

For a = e

ex = 1 + x + x2

2! + x3

3! + ... + xn

n! + xnϵ(x)

Ch(x) = Ch(0) + Ch′(0)
1! x + Ch′′(0)

2! x2 + ... + Ch(n)(0)
n! xn + xnϵ(x)

Ch(x) = 1 + x2

2! + x4

4! + ... + x2n

(2n)! + x2n+1ϵ(x)

Sh(x) = Sh(0) + Sh′(0)
1! x + Sh′′(0)

2! x2 + ... + Sh(n)(0)
n! xn + xnϵ(x)

Sh(x) = x + x3

3! + x5

5! + ... + x2n+1

(2n + 1)! + x2n+2ϵ(x)

cos(x) = cos(0) + cos′(0)
1! x + cos′′(0)

2! x2 + ... + cos(n)(0)
n! xn + xnϵ(x)
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cos(x) = 1 − x2

2! + x4

4! + ... + (−1)n x2n

(2n)! + x2n+1ϵ(x)

sin(x) = x − x3

3! + x5

5! + ... + (−1)n x2n+1

(2n + 1)! + x2n+2ϵ(x)

1
1 + x

= 1 − x + x2 − x3 + ... + (−1)nxn + xnϵ(x)

ln(1 + x) = x − x2

2 + x3

3 − x4

4 + ... + (−1)n−1 xn

n
+ xnϵ(x)

For α ∈ R et x ̸= −1

(1 + x)α = 1 + αx + α(α − 1)
2! x2 + ... + α(α − 1)...(α − n + 1)

n! xn + xnϵ(x)

For α = 1
2

√
1 + x = 1 + 1

2x − 1
8x2 + 1

16x3 + ... + (−1)n−1 1.1.3.5...(2n − 3)
2nn! xn + xnϵ(x)

For α = −1 we fall back on the finite expansion of 1
1 + x

1
1 − x

= 1 + x + x2 + x3 + ... + xn + xnϵ(x)

1.4 Algebraic combinations of finite expansions
If f and g can both be expanded at zero and λ is any constant, then each of the following
functions is also can be expanded at zero: The sum f + g, the difference f − g, the constant
multiple λ × f, the product f × g, the quotient f ÷ g, if g(0) ̸= 0 :

Consider the finite expansions at zero of f and g

f(x) = a0 + a1x + a2x
2 + ... + anxn + xnϵ1(x)

and
f(x) = b0 + b1x + b2x

2 + ... + bnxn + xnϵ2(x)
such that lim

x→0
ϵ1(x) = 0, lim

x→0
ϵ2(x) = 0 then the finite expansions of

• the sum f + g is

(f+g)(x) = f(x)+g(x) = (a0+a1x+a2x
2+...+anxn)+(b0+b1x+b2x

2+...+bnxn)+xn(ϵ1(x)+ϵ2(x))

Therefore

(f + g)(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + ... + (an + bn)xn + xn(ϵ1(x) + ϵ2(x))

and lim
x→0

(ϵ1(x) + ϵ2(x)) = 0

For example: If f(x) = ex and g(x) = e−x then

ex + e−x = 2 + 2x2

2! + 2x4

4! + ... + 2 x2k

(2k)! + x2kϵ(x) 2k ≤ n

Hence
ex + e−x

2 = 1 + x2

2! + x4

4! + ... + x2k

(2k)! + x2kϵ(x) = Ch(x) 2k ≤ n
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• the product The finite expansion at zero of the f.g is obtained by the product (a0 +
a1x + a2x

2 + ... + anxn)(b0 + b1x + b2x
2 + ... + bnxn) and keeping only the monomials

of degree less than n in the product
(f.g)(x) = f(x).g(x) = (A(x) + xnϵ1(x)) + (B(x) + xnϵ2(x))

such that A(x) = a0 + a1x + a2x
2 + ... + anxn and B(x) = b0 + b1x + b2x

2 + ... + bnxn

Then
(f.g)(x) = A(x).B(x) + xnϵ1(x).B(x) + xnϵ2(x).B(x) + x2nϵ1(x).ϵ2(x)

For example: Let the function f(x) = ex. sin(x). We find the finite expansions of the
function f of degree 6 near to zero.

f(x) = ex. sin(x) = (1 + x + x2

2! + x3

3! + ...).(x − x3

3! + x5

5! + ...)

f(x) = x + x2 + x3

3 − x5

33 + x6

18 + R6

Exercise: Find the finite expansion of the function f defined by: f(x) = ln(1 + x)
1 + x

of degree 6 at zero.

• the division The finite expansion at zero of the quotient f/g is obtained by the
euclidean division of (a0 + a1x + a2x

2 + ... + anxn) by (b0 + b1x + b2x
2 + ... + bnxn) by

increasing power order.
A(x) = B(x).Q(x) + xn+1R(x), avec deg(Q) ≤ n.

Such that Q is mean part of the finite expansions n de f

g

For example: The finite expansion of degree 2 of 2 + x + x3

1 + x2 . We put A(x) = 2 + x +
x3 et B(x) = 1 + x2, alors Q(x) = 2 + x − 2x2, R(x) = 1 + 2x therefore

A(x) = (1 + x2)(2 + x − 2x2) + x3(1 + 2x)

Example 1.4.1 The finite expansions of degree 5 of the function th : x 7→ th(x)

th(x) = sh(x)
ch(x) =

x + x3

3! + x5

5! + x5ϵ(x)

1 + x2

2! + x4

4! + x5ϵ(x)
= x − x3

3 + 2x5

15 +
x6.( x

180 + x3

180)

1 + x2

2! + x4

4!

1.4.1 Composite of finite expansions
Proposition 1.4.2 If g can be expanded at zero of degree n and if f can be expanded at g(0)
of degree n such that g(0) = 0. Then the composite function (f ◦ g) can be expanded at zero
of degree n by replacing the finite expansion of g in the finite expansion of f and by keeping
only the monomials of degree less or equal n.

Par example the finite expansion of degree 2 at 0 of the function x 7→ esin x. we have

sin x = x + x2ϵ(x) and ex = 1 + x + x2

2 + ϵ2(x)

then esin x = 1 + x + x2

2 + ϵ(x) avec lim
x→0

ϵ(x) = 0.
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1.4.2 The finite expansions at a point
We said that the function f : x 7→ f(x) can be represented by a finite expansion at point x0
if the function t 7→ f(t + x0). can be represented by finite expansion at zero.

Often we therefore reduce the problem to 0 by changing the variables t = x − x0.
For example The finite expansion of f(x) = ex at 1. We make the change variable

t = x − 1. If x is near to 1 then t is near to 0.

et = 1 + t + t2

2! + t3

3! + ... + tn

n! + xnϵ(t)

ex = e(1 + (x − 1) + (x − 1)2

2! + (x − 1)3

3! + ... + (x − 1)n

n! + xnϵ(x − 1)), lim
x→1

ϵ(x − 1) = 0.

Exercise:

1. Calculate the finite expansion at 0 of x 7→ chx by Taylor formula. Find this finite
expansions using that chx = ex + e−x

2 .

2. Calculate the finite expansion at 0 of degree 3 of 3
√

1 + x.

3. Justify the expression of 1
1−x

using the uniqueness finite expansion of the sum of a
geometric sequence.

1.4.3 The finite expansions at Infinity
We said that the function f : x 7→ f(x) can be represented by a finite expansion at infinity
if the function F : t 7→ f( 1

x
) can be represented by finite expansion at zero.

In other words f can be expended at infinity if there exists a0, a1, ..., an such that

f(x) = a0 + a1

x
+ a2

x2 + ... + an

xn
+ 1

xn
ϵ( 1

x
),

where lim
x→+∞

ϵ( 1
x

) = 0

Example 1.4.3 Let the function f defined by: f : x 7→ ln(2 + 1
x

)

f(x) = ln 2 + ln(1 + 1
2x

) = ln 2 + 1
2x

− 1
8x2 + 1

24x3 + ... + 1
n2nxn

+ 1
xn

ϵ( 1
x

)

This allows us to have a precise idea of the behavior of f in the neighborhood of +∞. When
x → +∞ then x → ln 2. And the second term is +1

2x therefore is positive, this means that
the function f(x) tends to ln 2 while remaining above to ln 2.

Remark 1.4.4 1. The finite expansions at +∞ is also called an asymptotic expansions.

2. We said that the function x 7→ f(x) can be expended at +∞ of degree n is equivalent
to x 7→ f( 1

x
) can be expended at 0+ by finite expansions of degree n.

3. We can similarly define what a finite expansions at −∞
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1.5 Applications

1.5.1 Using finite expansions to evaluate limits
The finite expansions provide a good way to understand the behavior of a function near a
specified point and so are useful for solving some indeterminate forms. When taking a limit
as x → 0 , we can often simplify the statement by substituting in finite expansions that we
know.

1. The finite expansions is very important for calculating limits with indeterminate forms!
It is enough just to note that if

f(x) = a0 + a1(x − x0) + a2(x − x0)2 + ... alors lim
x→x0

f(x) = a0.

Example:

lim
x→0

ln(1 + x) − tan x + 1
2 sin2 x

3x2 sin2 x

At 0

f(x) = ln(1 + x) − tan x + 1
2 sin2 x = (x − x2

2 + x3

3 − x4

4 + x4ϵ(x)) − (x − x3

3 + x4ϵ(x))

+1
2(x − x3

6 + x4ϵ(x))2

and
g(x) = 3x2 sin2 x = 3x2(x + xϵ(x))2 = 3x4 + x4ϵ(x)

Also
f(x)
g(x) =

− 5
12x4 + x4ϵ(x)
3x4 + x4ϵ(x)

Then
lim
x→0

f(x)
g(x) = − 5

36
Note: by calculating the finite expansions at a lower order (2 for example), we would

not have been able to conclude, because we would have obtained f(x)
g(x) = x2ϵ(x)

x2ϵ(x) , which
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does not remove the indeterminacy. Generally, we calculate the finite expansion at the
lowest possible order, and if this is not enough, we increase the order (and therefore
the precision of the approximation).

2. Suppose a function f : I → R admitting a finite expansion at x0 : then

f(x) = a0 + a1(x − x0) + ak(x − x0)k + (x − x0)kϵ(x)

where k is the smallest integer greater than 2 such that the coefficient ak either non-
zero. then the tangent equation of the curve of f at x0 is y = a0 + a1(x − x0) and the
relative position of the curve compared to (or, in relation to) the tangent for x near to
x0 is given by the sign f(x) − y i.e. the sign of ak(x − x0)k.

Example 1.5.1 Let f the function defined by:

f(x) = x4 − 2x3 + 1.

• Finding the tangent at 1
2 of the curve of f et specify the relative position of the

curve in relation to the tangent.
We have f”(1

2) = −3 ̸= 0 et k = 2

We deduce the finite expansion at 1
2 by Taylor formula

f(x) = f(1
2) + f ′(1

2)(x − 1
2) + f”(1

2)(x − 1
2)2 + (x − 1

2)2ϵ(x)

So the tangent at 1
2 is y = 13

16 −(x− 1
2) and the curve of f is bellow to the tangent

because f(x) − y = (−3
2 + ϵ(x))(x − 1

2)2 is negative around to x = 1
2

• Let’s find the inflection points.
The inflection points are to be found among the solutions of f”(x) = 0. therefore
x = 0 and x = 1.
* The finite expansions at 0 : is f(x) = 1 − 2x3 + x4 (it’s just a matter of writing
the monomials in increasing degrees!). The tangent equation at x-axis point 0
is y = 1 (the horizontal tangent). because −3x2 change the sign at 0 then 0 is
inflexion point of f.
* The finite expansion at x = 1 : is f(x) = −2(x − 1) + 2(x − 1)3 + (x − 1)4. The
tangent equation at x-axis point 1 is y = −2(x − 1). because 2(x − 1)3 change the
sign at 1, 1 also is an inflexion point of f .
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