People's Democratic Republic of Algeria

 Ministry of Higher Education and Scientific Research
Mohamed Boudiaf University of M'sila

Faculty of Sciences

Common Trunk of Matter Sciences
Practical works - Physics 2 $1^{\text {st }}$ year $-2^{\text {nd }}$ semester

$4^{\text {th }}$ Practical Work

ResistanceMeasurement

Experiment date:/......../.
Corrector professor :
Report prepared by :

First name	Family name	Group	Sup- group	Preparation mark	Final mark
				$/ 5,00$	$/ 20,00$
				$/ 5,00$	$/ 20,00$
				$/ 5,00$	$/ 20,00$
				$/ 5,00$	$/ 20,00$
				$/ 5,00$	$/ 20,00$
				$/ 5,00$	$/ 20,00$
			$/ 5,00$	$/ 20,00$	

Academic year : 2023/2024

1-The purpose of experiment

The purpose of this experiment is to measure current, voltage and resistance using a multimeter. Calculate Resistance using Ohm's law. Assemble the setup of simple and mixed electrical circuits. Determine the equivalent resistance of a mixed circuit. Check the law of junctions and the law of loops. Highlight the usefulness and use of the Wheatstone bridge and Knowledge of metals from the measurement of resistivity.

2-Notions and preparation work

2-1- Some laws of electrical circuits

Let a circuit consist of a generator (E) connected to a resistor R (expressed in Ohms) using the conductive wires (figure-1).

Voltage is responsible for the movement of charges in an electrical circuit, the current is the flow of these charges, and resistance represents the tendency of a circuit element

Figure-1 to oppose the flow of current.
The voltage V (expressed in Volts) is measured using a voltmeter « $V »$. It is a parallel measurement with an element of the circuit.

The current I (expressed in Amps) is measured using an ammeter « A ». It is a series measurement in the circuit. According to Ohm's law, measurements made against a resistor must satisfy the relationship: $V=R I$,
A group of resistances $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ in series has an equivalent resistance given by $R_{e q}=R_{1}+R_{2}+$ $\cdots+R_{n}$, while $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}$ when these resistors are connected in parallel.

- Calculate the equivalent resistance for $R_{1}=100 \Omega, R_{2}=150 \Omega$, and $R_{3}=100 \Omega$.

2-1-a- R_{1}, R_{2} and R_{3} are connected in series, $R_{e q}=\cdots \Omega$.
2-1-b- R_{1}, R_{2} and R_{3} are connected in parallel, $R_{e q}=\cdots \Omega$

figure-2

2-1-c- R_{1}, R_{2} and R_{3} are connected in a mixed circuit according to figure- $2 ; R_{e q}=\cdots \quad \Omega$.

Note: The equivalent resistance is calculated from the equivalent circuit where each branch is replaced by a resistance by first simplifying the series resistance groupings.

2-1-d- R_{1}, R_{2} and R_{3} are mounted in a mixed circuit according to Figure-3; $R_{e q}=\cdots \quad \Omega$ -The law of junctions applies to connection points of circuit elements. The law of junctions states that the The sum of the currents entering a junction is equal to
The sum of the currents leaving the junction.
For the mixed circuit following figure-3; $I=I_{1}+I_{2}$.

Figure-3

The law of meshes applies to loops in the electrical circuit. The law of meshes states that the sum of currents entering a node is equal to the sum of the currents leaving the node. (figure-4). For the previous circuit, we have
Mesh $N^{0} 1$ traveled by the current I_{1} :
$E=R_{3} I_{1}=R_{3}\left(I-I_{2}\right)$
Mesh $N^{0} 2$ traveled by the current I_{2} :
$0=-R_{3} I_{1}+\left(R_{1}+R_{2}\right) I_{2}=R_{3}\left(I_{2}-I\right)+\left(R_{1}+R_{2}\right) I_{2}$
where E is the voltage across the generator.

Figure-4

2-2- Wheatstone bridge

The Wheatstone bridge is used to convert a variation in resistance into a variation in voltage, which makes it a sensor in environments where measurement is difficult.
Consider the setup of figure-5.
2-2-a- Give the direction of $U_{A M}, U_{B M}, U_{A B}$ in figure-5.
2-2-b- Express $U_{A M}=f\left(R_{1}, R_{2}, E\right)$
$U_{A M}=\cdots$
2-2-c- Express $U_{B M}=f\left(R_{v}, R_{x}, E\right)$
$U_{B M}=\cdots$
2-2-d- Deduce $U_{A B}=f\left(R_{1}, R_{2}, R_{v}, R_{x}, E\right)$
$U_{A B}=\cdots$
2-2-c-If $U_{A B}=0$, the bridge is said to be equilibrated.

Figure-5

Show that the expression for R_{x} takes a form independent of the supply voltage.

3- Practical work

3-1- Simple circuits

3-1-a- Resistors in series

Perform the setup where R_{1}, R_{2} and R_{3} are
Connecting in series.
Powering your circuit with voltage $E=5.0 \mathrm{~V}$ and complete the opposite table.

	R_{l}	R_{2}	R_{3}
$I(m A)$			
V(Volts)			
Resistance (Ω)			

3-1-b- Resistors in parallel

Perform the setup where R_{1}, R_{2} and R_{3} are
Connecting in parallel.
Powering your circuit with voltage $E=5.0 \mathrm{~V}$ and complete the opposite table

3-2-Mixed circuits

Perform the setup where R_{1}, R_{2} and R_{3} are following figure-2.
Powering your circuit with voltage $E=5.0 \mathrm{~V}$ and complete the opposite table
Perform the setup where R_{1}, R_{2} and R_{3} are following figure-3.
Powering your circuit with voltage $E=5.0 \mathrm{~V}$ and complete the opposite table

	R_{1}	R_{2}	R_{3}
$I(m A)$			
V (Volts)			
Resistance (Ω)			

	R_{l}	R_{2}	R_{3}
$I(\mathrm{~mA})$			
V(Volts)			
Resistance (Ω)			

	R_{1}	R_{2}	R_{3}
$I(m A)$			
$V($ Volts $)$			
Resistance (Ω)			

3-3- Measuring the resistivity of a material

Perform the experimental setup in figure -5 , where $R_{1}=1 \mathrm{k} \Omega$ and $R_{2}=100 \mathrm{k} \Omega$ and the resistant wire in place of R_{x}. Power the circuit with a voltage $\mathrm{E}=5.0 \mathrm{~V}$.
Vary the resistance " R_{v} " until the bridge is equilibrated (the galvanometer indicates zero voltage). For different section values, S, of resistant wire " $L=1 \mathrm{~m}$ " long;
a)-Complete the table opposite.
b)-Deduce the type of the two metals; Use the displayed table of resistivity values.

Wire diameter $d(\mathrm{~mm})$	1	0.5	0.7
$\mathrm{R}_{\mathrm{v}}(\Omega)$			
Resistance $R_{x}(\Omega)$			
Resistivity $\rho=\frac{R S}{L}$ $(\Omega . \mathrm{cm})$			

Electrical resistivity values of certain materials (at $\mathbf{T}=\mathbf{2 0}{ }^{\circ} \mathrm{C}$)

Material	Resistivity ($\mathbf{1 0}^{-6}$ ת .cm)
Silver	1.63
Copper	1.69
Gold	2.2
Aluminum	2.67
Tungsten	5.4
Zinc	5.96
Brass (copper + zinc alloy)	6.2-7.8
Iron	10.1
Platinum	10.58
Lead	20.6
Constantan (Cu55/Ni45 alloy)	52
Carbon	3500
Germanium	46×10^{6}
Silicon	23×10^{6}
Glass	$10^{10}-10^{14}$
Hard rubber	10^{13}
Suffer	10^{15}
Fused Quartz	76×10^{16}

