## Tutorial 3

## Exercise 1

1.7. Compute the scalar cardinalities for each of the following fuzzy sets:
(a) $A=.4 / v+.2 / w+.5 / x+.4 / y+1 / z$;
(b) $B=1 / x+1 / y+1 / z$;
(c) $C(x)=\frac{x}{x+1}$ for $x \in\{0,1 \ldots, 10\}=X$;
(d) $D(x)=1-x / 10$ for $x \in\{0,1, \ldots, 10\}=X$.
1.8. Let $A, B$ be fuzzy sets defined on a universal set $X$. Prove that

$$
|A|+|B|=|A \cup B|+|A \cap B|,
$$

where $\cap, \cup$ are the standard fuzzy intersection and union, respectively.
1.9. Order the fuzzy sets defined by the following membership grade functions (assuming $x \geq 0$ ) by the inclusion (subset) relation:

$$
A(x)=\frac{1}{1+10 x}, B(x)=\left(\frac{1}{1+10 x}\right)^{1 / 2}, C(x)=\left(\frac{1}{1+10 x}\right)^{2} .
$$

.10. Consider the fuzzy sets $A, B$, and $C$ defined on the interval $X=[0,10]$ of real numbers by the membership grade functions

$$
A(x)=\frac{x}{x+2}, B(x)=2^{-x}, C(x)=\frac{1}{1+10(x-2)^{2}} .
$$

Determine mathematical formulas and graphs of the membership grade functions of each of the following sets:
(a) $\bar{A}, \bar{B}, \bar{C}$;
(b) $A \cup B, A \cup C, B \cup C$;
(c) $A \cap B, A \cap C, B \cap C$;
(d) $A \cup B \cup C, A \cap B \cap C$;
(e) $A \cap \bar{C}, \overline{B \cap C}, \overline{A \cup C}$.
1.11. Calculate the $\alpha$-cuts and strong $\alpha$-cuts of the three fuzzy sets in Exercise 1.10 for some values of $\alpha$, for example, $\alpha=0.2,0.5,0.8,1$.
1.12. Restricting the universal set to [ 0,10 ], determine which fuzzy sets in Exercise 1.10 are convex.
1.13. Let $A, B$ be two fuzzy sets of a universal set $X$. The difference of $A$ and $B$ is defined by

$$
A-B=A \cap \bar{B} ;
$$

and the symmetric difference of $A$ and $B$ is defined by

$$
A \Delta B=(A-B) \cup(B-A) .
$$

Prove that:
(a) $(A \Delta B) \Delta C=A \Delta(B \Delta C)$;
(b) $A \Delta B \Delta C=(\bar{A} \cap \bar{B} \cap C) \cup(\bar{A} \cap B \cap \bar{C}) \cup(A \cap \bar{B} \cap \bar{C}) \cup(A \cap B \cap C)$.

## Exercise 2

The standard fuzzy intersection is the only idempotent $t$-norm.
where $i_{\text {min }}$ denotes the drastic intersection.

Let $i_{w}$ denote the class of Yager $t$-norms. Then

$$
i_{\min }(a, b) \leq i_{w}(a, b) \leq \min (a, b)
$$

for all $a, b \in[0,1]$.

## Exercise 3

The fuzzy binary relation $R$ is defined on sets $X=\{1,2, \ldots, 100\}$ and $Y=\{50,51, \ldots, 100\}$ and represents the relation " $x$ is much smaller than $y$." It is defined by membership function

$$
R(x, y)= \begin{cases}1-\frac{x}{y} & \text { for } x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

where $x \in X$ and $y \in Y$.
(a) What is the domain of $R$ ?
(b) What is the range of $R$ ?
(c) What is the height of $R$ ?
(d) Calculate $R^{-1}$.

## Exercise 4

## Show that

The following membership matrix defines a fuzzy partial ordering $R$ on the set $\bar{X}=\{a, b, c, d, d\}$;

$$
\mathbf{R}=\begin{aligned}
& \\
& a \\
& b \\
& c \\
& d \\
& e
\end{aligned}\left[\begin{array}{rrrrr}
a & b & c & d & e \\
1 & .7 & 0 & 1 & .7 \\
0 & 1 & 0 & .9 & 0 \\
.5 & .7 & 1 & 1 & .8 \\
0 & 0 & 0 & 1 & 0 \\
0 & .1 & 0 & .9 & 1
\end{array}\right]
$$

