
chapiter 3: 1st Principle of Thermodynamics 

III.1 Equivalence between heat and work  

Benjamin Thomson (1798), Lord of Rumford, was the first to put forward the idea equivalence 

between heat and work, which can be transformed into each other. There a simple relationship 

between the mechanical work performed on a system and the heat heat it generates. James 

Prescott Joule first experimentally found that the heat produced in a system is directly 

proportional to the mechanical work performed on it. 

 

 

 

 

 

 

Fig.III.1: Joule apparatus for measuring measuring the mechanical equivalent of heat |[6]. 

 

He also calculated the constant of proportionality in a unique experiment which we will also 

describe in this article. 

If W is the work done on a system and Q is the amount of heat produced thanks to this work, 

then : 

  

 

 

The expression J says that the mechanical equivalent of heat is the number of units of work 

units of work to be performed on a system to produce a single unit of heat. 



III.2 Statement of the first principle 

The thermodynamic balance W+Q of exchanges between a system and the external 

environment has the same value for all transformations that take the system from the same 

initial the same initial state to the same final state. For two transformations with the same 

beginnings and end states : 

 

 

wherever you are. Only the initial and final states count. 

III.3 General expression of the first principle 

For a closed system, the equivalence principle leads to the following general expression of the 

first principle (in a unified system of units): 

 

 

- The quantity U2 - U1 corresponds to the increase in the system's energy U between 

initial state 1 and final state 2. 

- The quantity Q is the heat received by the system, and W is the work supplied to the 

external environment. 

It is often convenient to have the differential form of the first principle available 

application to infinitesimal transformations. In this case, we write : 

 

Where : 

-  Q: designates the quantity of elementary heat received by the system during time dt. 

- dW: the corresponding work supplied to the external environment.  

Application examples: 

Compression of a gas 



We're interested in the evolution of one mole of a perfect diatomic gas enclosed in an enclosure. 

an enclosure. The enclosure is in contact with the atmosphere (pressure P0 , temperature T0), 

adding a mass M to the piston is equivalent to doubling the external pressure. 

For each of these evolutions, starting from the initial state PI= P0 and TI = T0, we aim to 

determine the final state, as well as the energy balance, i.e. the quantities ΔU, W and Q. 

First experience: 

 

 

Second experiment: the enclosure is now insulated. 

 

 

 

Third experiment: we repeat the set-up from the first experiment, now increasing slowly 

increasing the pressure from P0 to 2P0. 

III.4. Definition of internal energy U 

The internal energy of a thermodynamic system is the energy it contains. It is an an extensive 

state function associated with the system. This energy accounts for the system's internal 

agitation at the atomic level. Like all energies, it is defined to within one constant. 

III.5 Differential expression of internal energy 

According to the first principle of thermodynamics : 

 



 

If only pressure forces are involved : 

 

 

III.6. Differential expression of the first principle 

Let two states A and A' be infinitely close: 

 

 

The sum W+Q is constant whatever the nature of the transformation: 

 

 

 

  

 

 

 

 

 

 

 

 

 

Sign convention: 



 

- Si ΔU>0 : system receives energy. 

- Si ΔU < 0 : the system gives up energy. 

The same applies to Q and W. 

III.7. Calculating the change in internal energy ΔU 

"During a transformation of a system, the variation in total energy (Δ ET ) is equal to the sum 

of all energy quantities exchanged with the external medium external environment: 

 

Generally, for thermodynamic transformations : 

Ec = Cste and Ep = Cste  hence: 

 

 

 

Therefore, for an isolated system: ΔU =0 (U remains constant) 

Example: 

Over a period of time, the electric motor of an aquarium pump (system) does work of 555 kJ 

on the pump and releases 124 kJ of heat to the outside environment. 

What is the energy change? 

 

 

III.7.1. Joule's 1st law; the variation of the internal energy of a perfect gas 

For one mole of a perfect monoatomic gas, the internal energy is given by : 

 

 



Suppose the system undergoes a transformation from state (1) [P1, V1,T1] to state (2) [P2, 

V2,T2]. Therefore : 

 

 

Joule's 1st law: The internal energy U of a perfect gas depends only on its temperature T. 

temperature T. (For a monoatomic perfect gas): Cv = 3/2 R 

- If the transformation is adiabatic (thermally isolated): Q = 0  => U =W in this case W is 

independent of the path followed. 

- If the system is mechanically isolated;W =0  => U = Q => Q is independent of the path 

followed. independent of the path followed. 

 

III.7.2. Isochore transformation 

According to the first principle, an elementary variation dU of U is written : 

 

Because (V=Cste). 

The change in internal energy is therefore reduced to the amount of heat exchanged: 

 

 

In this case, the thermal energy Q exchanged at constant volume depends only on the final and 

initial states of the system under study. 

initial state of the system under study, because its variation is determined by that of a that of a 

state function U. 

III.7.3. Isobaric transformation 

Most transformations are carried out at constant pressure, usually at atmospheric pressure. 



atmospheric pressure. The system can then exchange heat and work and work with the external 

environment. 

For an elementary transformation : dU=δW +  δQ 

with  δQ = heat exchanged at constant P : 

 since   we can see : 

 

 

III.7.4. Relationship between QP and QV 

This relationship is mainly used for gas-phase or heterogeneous-phase reactions or 

heterogeneous-phase reactions, where the reactants and products of the reaction are gases, 

leading to a significant variation in Δ(P.V). 

- At constant volume, dV = 0 and dU = dQ i.e. integrating: Δ U = Q . 

- At constant pressure, dP = 0 and dH = dQ, i.e. integrating: Δ H = Q . 

The heat exchanged with the external medium at constant pressure is equal to the enthalpy 

variation ΔH of the system. 

Example: 

One mole of N2, considered as a perfect gas, rises from 20°C to 100°C. 

Calculate the heat Q . 

1- for an isochoric transformation 

2- for an isobaric transformation. 

 

 

Solution: 



 

 

 

 

III.7.4.1. For a perfect gas (Mayer's relation) 

In physics, and more particularly in thermodynamics, the Mayer relation, established in the 19th 

century by Julius Robert von Mayer, is a formula relating the heat capacities CP at constant 

pressure and Cv at constant volume of a perfect of a perfect gas according to : 

 

 

Mayer relationship : 

With : 

-  n: the quantity of matter (number of moles); 

-  R: the universal perfect gas constant. 



 

 

This relationship can be generalized to real bodies as follows: 

Example: 

For one mole, Mayer found : 

 

While the precise value of J is 4.18 J.cal-1 

III.7.4.2. For chemical reactions 

In thermochemistry, Qp and Qv correspond respectively to the heats of reaction At constant 

pressure and constant volume. 

If we rewrite H = U + PV  in the form: ΔH = ΔU + Δ(PV)  we obtain: 

 

 

Example: 

Combustion of methane releases 2000 kJ at 25°C. 

Deduce the reaction 

 

 



III.7.5. Reversible adiabatic work - Laplace's equation 

In the case of a thermodynamic system, only the internal energy varies: 

dU= δW + δQ, the mechanical work δW is the product of the change in volume dV by the 

external pressure P exerted for this change in volume dW = - PdV . If this process is adiabatic, 

i.e. without heat exchange heat exchange: δQ= 0 , hence : 

 

Let's now consider the enthalpy of the system (H = U + PV) and its variation: 

 

 

 

If we assume that this gas behaves like a perfect gas, the variations, internal energy and enthalpy 

of the system depend only on temperature, according to depend only on temperature, according 

to the Joule-Gay-Lussac and Joule-Thomson laws respectively. 

Lussac and Joule-Thomson laws respectively. It follows that : 

 

 

Where  Cp and Cv are respectively the heat capacities at constant volume and pressure and T is 

the temperature. The unit of  Cp and Cv is the joule per kelvin (J/K). 

From this we can deduce two relationships: by internal energy:  Cv dT=  - PdV , by enthalpy: 

Cp dT=  -PdV from which we also derive : 

 



Laplace's coefficient ɣ, or adiabatic index, defined by the ratio of of isobaric and isochoric heat 

capacities : 

 

We rewrite the relationship established above: 

 

Let's integrate this relationship between two states (P0 ,V0 , T0)  and (P1 ,V1 , T1) , for the 

quantity of gas, with : 

 

 

We'll assume that ɣ is constant during the transformation, despite the temperature change. We 

obtain : 

 

and therefore : 

 

If we substitute in (III.34) : 

 

If we also substitute in (III.34) : 

 



 

Example: 

Defining the coefficient ɣ as the ratio Cp  /Cv and using the Mayer relation, find the expressions 

relationship, find the expressions Cp and Cv as a function of R. for application, considering an 

adiabatic transformation. 

Give the expressions for Laplace's law and Laplace's law of work. 

Solution: 

Defining Cp and Cv as the molar heat capacities at constant pressure and constant volume 

respectively, we have at constant pressure and constant volume, we have : According to Mayer 

: 

 

III.7.6. Irreversible adiabatic work 

There is no exchange of heat or work between the gas and the outside world. For the gas system, 

ΔU = 0  and, if the gas is perfect, U depends only on T, and temperature does not vary. 

on T, and temperature does not vary. 

If we're dealing with a perfect gas ( PV = nRT ), since there is no variation in the product PV 

must be constant, i.e. : PiVi =PfVf 

 

 

Example: 

Calculate the work done when one mole of perfect gas expands isothermally at 298 K from P1= 

10 atm to P2= 5atm. 



a) Reversible 

b) Irreversible 

Solution: 

The work of the pressure forces is expressed by : W = -Pext dV 

a) Reversible : 

 

 

Isothermal transformation : 

 

 

b) Irreversible : 

 

 

Note that : 

 



 

 

III.8. Notion of enthalpy H 

In physics, the variable enthalpy is a quantity related to the energy of a system thermodynamic 

system. It comprises the system's internal energy (denoted U ), to which is added the product 

of pressure and volume (denoted PV).  

 

 

III.8.1. The enthalpy function 

Let's consider a monobaric transformation in which the system moves from a state A to a state 

B of equilibrium, exchanging heat  Qp and work solely through the pressure forces Wf ,p . The 

first principle allows us to write : 

 

U being the internal energy state function at constant pressure, the work of the pressure forces 

is equal to : 

 

 

Hence : 

 

This defines a new state function, the enthalpy function H(U,P,V) : 

 

It follows that : 

 

 



III.8.2. Differential expression of enthalpy 

 

 

Let's apply the 1st principle: 

 

III.8.3. Joule's 2nd law; enthalpy variation of perfect gases 

Joule's second law: The enthalpy of a perfect gas depends only on its temperature, hence : 

 

Applying the second principle for ΔH we have : 

 

(2nd Joule's law). 

 

Where : 

Cp: is the molar heat capacity at constant pressure in J.mol-1.K-1. 

Cp :is the mass heat capacity at constant pressure in J.kg-1.K-1. 

Since both heat capacities are such that : 

 

We deduce : 

 


