Properties of max-min composition

1. Associativity The max-min composition is associative, that is

$$(\tilde{R}_3 \circ \tilde{R}_2) \circ \tilde{R}_1 = \tilde{R}_3 \circ (\tilde{R}_2 \circ \tilde{R}_1)$$

Consequence: the power of a fuzzy relation. If $\tilde{R}_1 = \tilde{R}_2 = \tilde{R}_3 = \tilde{R}$, we can write: $\tilde{R}^2 = \tilde{R} \circ \tilde{R}$, $\tilde{R}^3 = \tilde{R} \circ \tilde{R} \circ \tilde{R}$ and so on. Hence, for any *n* natural, we can define \tilde{R}^n

- 2. Reflexivity Definition: A fuzzy relation defined in $X \times X$ is reflexive iff (if and only if) $\mu_{\tilde{R}}(x,x) = 1$, $\forall x \in X$ Property: If the fuzzy relations \tilde{R}_1 and \tilde{R}_2 are reflexive, then their max-min composition, $\tilde{R}_1 \circ \tilde{R}_2$ is also reflexive.
- 3. Symmetry Definition: A fuzzy relation is called symmetric if $\tilde{R}(x, y) = \tilde{R}(y, x)$
- Antisymmetry Definition: A fuzzy relation is called antisymmetric if, ∀x, y ∈ X, if x ≠ y then either μ_Ř(x, y) ≠ μ_Ř(y, x), or μ_Ř(x, y) = μ_Ř(y, x) = 0
- 5. A fuzzy is called perfect antisymmetric if $\forall x \neq y$, whenever $\mu_{\tilde{R}}(x, y) > 0$, then $\mu_{\tilde{R}}(y, x) = 0$
- 6. Transitivity Definition: A fuzzy relation \tilde{R} is called max-min transitive if $\tilde{R} \circ \tilde{R} \subseteq \tilde{R}$.

Similarity, de pre-order and order fuzzy relations

Definition

A *similarity relation* is a fuzzy relation that is reflexive, symmetrical and max-min transitive

The idea of similarity is analogous to the idea of equivalence, being possible to create similarity trees.

Definition

A fuzzy relation which is max-min transitive and reflexive is called *fuzzy preorder relation*.

Definition

A fuzzy relation which is max-min transitive, reflexive and antisymmetric is called *fuzzy order relation*.