
28 Chapter 1. Introduction to ARM Cortex Processors

Example 1:
To set the fourth bit (bit[3]) of the 32-bit data at 0x20000000 address to ’1’, we will write
‘1’ to address 0x2200000C, which is the alias address of the fourth bit of the 32-bit data at
0x20000000.

Example 2:
In this example, we demonstrate read and write operations to/from the bit-band alias
region:

1. Store the value 0x3355AACC at memory address 0x20000000.
2. Read from memory address 0x22000008. This read access is remapped to access

0x20000000. The returned value is 1 (bit[2], the third bit, of 0x3355AACC), it is
like reading of bit[2] from memory address 0x20000000.

3. Write 0x0 to to memory address 0x22000008. This write access is remapped into
a READ-MODIFY-WRITE to 0x20000000. The value 0x3355AACC is read from
memory, bit 2 is cleared, and resulting in 0x3355AAC8, which is then written back
to memory address 0x20000000.

4. Now read 0x20000000. That gives you a return value of 0x3355AAC8 (bit[2]
cleared).

1.8 Exceptions and interrupts
1.8.1 What are exceptions?

Exceptions are events that cause changes to program flow. In the ARM architecture,
interrupts are one type of exception. Interrupts are usually generated from peripheral
or external inputs, and in some cases they can be triggered by software. The exception
handlers for interrupts are also referred to as Interrupt Service Routines (ISR). When an
exception occurs, the processor will perform the following tasks (See Figure 1.24):

1. Suspend the current executing task in the main code;
2. Perform some hardwired routines, such as saving registers;
3. Execute a part of the program called the exception handler or interrupt service

routine (ISR), including a return-from-interrupt instruction at the end;
4. Resume running the main code.

Entering exception handler: Hardwired CPU response activities
After the exception is triggered, the different activities that should be taken to handle this
exception are:

• Finish the current instruction, except for lengthy instructions, will be abandoned and
restarted after the ISR execution;

1.8 Exceptions and interrupts 29

Figure 1.24: Interrupt or Exception Processing Sequence

• Save the current architectural state (pushing eight registers) onto the stack xPSR,
PC(R15), LR(R14), R12, R3, R2, R1, R0. This operation is called “Stacking” (See
Figure 1.25) ;

• Switch code execution into handler/privileged mode and the processor must be using
MSP;

• Load IPSR (Interrupt Program Status Register) with the correct exception number
to be executed (handler type) which is in [8:0] bit position (≥ 1 and ≤ 255) on the
xPSR register;

• Load PC with the address of the exception handler which will be found on the vector
table;

• Load the EXC_RETURN value into the LR, which indicates from which stack
pointer to restore registers: MSP (0) or PSP (1), and which mode to return to:
Handler (0) or Thread (1) (the EXC_RETURN value = 0xFFFF_FFF9 indicates
return to thread with MSP) ;

• Start executing the code of the exception handler, which can only be stopped by
another higher priority interrupt, and registers values will be pushed to the stack.

Usually, 16 clock cycles are needed from the exception request to the execution of the
first instruction in the handler.

Figure 1.25: Pushing current architecture context onto current stack.

30 Chapter 1. Introduction to ARM Cortex Processors

Note: The used SP (main (MSP) or process (PSP)) depends on the operating mode,
as determined by second bit (bit[1]) of the CONTROL register, while the Handler mode
always uses MSP.

Exiting an exception handler

Exiting the exception handler involves three steps:
1. Execute the instruction triggering the exception return processing; two methods are

possible:
• As there is no special instruction for returning from an exception or interrupt,

it will be depends on where the return address has been stored:
– If the return address is still in the LR, use the regular instruction BX LR,

which branches to the address stored in the Link Register (LR) by loading
the PC with the contents of LR.

– If the return address has been stored on the stack, use POP ..., PC to pop
the address from the stack into the PC.

• Using the special value EXC_RETURN, which will trigger the exception
return mechanism when it is loaded into the Program Counter (PC):

– Use BX LR if the EXC_RETURN value is still in the LR.
– Use POP if EXC_RETURN has been saved on the stack.

Note: The EXC_RETURN value lies in the memory range 0xF0000000 to
0xFFFFFFFF. This range is in the system region defined as non-executable
in the architecture, thus preventing accidental execution of non-instruction
data.

2. Check EXC_RETURN (bit 2) to determine from which stack (MSP or PSP) the
context should be restored (e.g., PC=0xFFFF_FFF9 indicates a return to thread mode
using the main stack pointer (MSP)).

3. Perform the “unstacking” operation, where R0, R1, R2, R3, R12, LR, PC, and xPSR
are restored, setting the SP back to its previous value, and reactivating thread mode.
The system then resumes the same execution state as before the interrupt.

What are exception sources ?

Exceptions are processed by the Nested Vectored Interrupt Controller (NVIC). These
exceptions can be (See Figure 1.26):

1. Interrupt Requests (IRQs) generated by on-chip peripherals or from external
interrupt inputs through I/O ports.

2. Non-Maskable Interrupt (NMI) request that could be used by a watchdog timer
or brownout detector (a voltage supply monitoring level unit).

3. Timer called SysTick that can generate a periodic timer interrupt request, which
can be used for simple timing control.

4. Processor exception events - These could be fault events indicating system error
conditions or exceptions generated by software to support embedded OS operations.

1.8.2 Microcontroller interrupts

As mentioned in the previous section, the interrupts can be generated by on-chip peripherals,
processor exception events or from external through I/O port, so the different interrupts
can be classified to:

1.8 Exceptions and interrupts 31

Figure 1.26: Various exception sources.

1. Hardware interrupts: they are based on asynchronous external events; Examples :
interrupt is asserted, character is received on serial port, or ADC converter finishes
conversion for example;

2. Exceptions, faults, software interrupts: They usually occur synchronously which
means they are the result of undesirable behavior of executed instructions; Examples
: undefined instructions, overflow occurs for a given instruction

Each exception source has an exception number that can be found in various registers,
including the IPSR. It is used to determine the exception vector addresses stored in a vector
table. Exception numbers 1 to 15 are classified as system exceptions, and exceptions 16
and above are for interrupts. Cortex-M4 processors can support up to 240 interrupt inputs;
however, the typical range is from 16 to 100.

1.8.3 Nested vectored interrupt controller (NVIC)
The NVIC is a part of the Cortex-M4. It is programmable and its registers are located in
the System Control Space (SCS) of the memory map (from 0xE000E000 to 0xE000EFFF).
The NVIC handles the exceptions and interrupt configurations, prioritization, and interrupt
masking. The NVIC has the following features:

Flexible exception and interrupt management
Each interrupt (apart from the NMI) can be enabled or disabled and can have its pending
status set or cleared by software. The NVIC can handle various types of interrupt sources:

• Pulsed interrupt request - when the NVIC receives a pulse at its interrupt input,
the pending status is set and held until the interrupt gets serviced.

• Level triggered interrupt request - the interrupt source holds the request high until
the interrupt is serviced.

Nested exception/interrupt support
When an exception occurs, the NVIC will compare the priority level of this exception to
the current level. If the new exception has a higher priority, the current running task will
be suspended. This process is called “preemption.” When the higher priority exception
handler is complete, it resumes the exception that was running previously.

Vectored exception/interrupt entry
The Cortex-M processors automatically locate the starting point of the exception handler
from a vector table in the memory (See Figure 1.27).

32 Chapter 1. Introduction to ARM Cortex Processors

Figure 1.27: Exception types (LSB of exception vectors should be set to 1 to indicate
Thumb state)

Interrupt masking
The Cortex-M4 provides several interrupt masking registers, such as the PRIMASK special
register, which allows disabling all exceptions except HardFault and NMI. Alternatively,
the BASEPRI register can be used to selectively mask exceptions or interrupts below a
certain priority level.

In addition, the NVIC saves, and automatically restores, a set of the CPU registers
(R0-R3, R12, PC, PSR, and LR), does a quick entry to the next pending interrupt without a
complete pop/push sequence.

1.8.4 Vector table
The vector table is an array of word data located in the system memory, with each entry
representing the starting address of one exception type (Figure 1.27). The vector table is
relocatable, and its relocation is controlled by the Vector Table Offset Register (VTOR)
in the NVIC. After a reset, the VTOR is set to 0 by default; hence, the vector table is
initially located at address 0x0. Since the Cortex-M processors can support only Thumb
instructions, the LSB of all the exception vectors should be set to 1.

1.9 Instruction Set
The Instruction Set Architecture (ISA) of ARM has evolved from ARM instructions to
Thumb-2, as illustrated in Figure 1.27. ARM Cortex-M processors are exclusively based on
Thumb-2 technology, which is mix of Arm and Thumb-1 Instruction sets, Benefiting from
both 32-bit Arm (high performance) and 16-bit Thumb-1 (high code density). Compared
to 32-bit Arm instructions set, Thumb-2 code size is reduced by 26%, with similar
performance.

1.9 Instruction Set 33

Figure 1.28: Evolution of the ARM Instruction Set Architecture

The instruction set support in the current Cortex-M processors is illustrated in Fig-
ure 1.29, where the 16 instructions are for to general data processing and I/O control
tasks. while advanced data processing, hardware division, bit field manipulation, MAC
(Multiply Accumulate) are 32-bit instructions and supported by both the Cortex-M3 and
M4. Additionally, there are other instructions specifically designed for DSP applications
or floating-point operations, and these are supported by the Cortex-M4 only.

Assembly language syntax

The general format for an assembly instruction for ARM Keil compilers is as follows:

label
mnemonic operand1, operand2, operand3, ; Comments

Where:
• Label is used as a reference to an address location.
• Mnemonic is a symbolic abbreviation that replaces the instruction opcode.
• Operand1 can be:

– The destination of the operation for data processing instructions.
– The register into which data is loaded for a memory read instruction (except

multiple load instructions).
– The register that holds the data to be written to memory for a memory write

instruction (except multiple store instructions).
• Operand2 is normally the source of the operation and is usually a register.
• Operand2 is the source operand and may be a register, an immediate number, a

register shifted by a constant amount of bits (using the Barrel shifter), or a register
plus an offset.

34 Chapter 1. Introduction to ARM Cortex Processors

Figure 1.29: Instruction set of the Cortex-M processors

1.9 Instruction Set 35

• Comments are written after a semicolon (";"), which does not affect the program.

Nevertheless, instructions that handle multiple loads and stores have a different syntax
and the number of operands depends on the instruction type, some instructions do not
require any operand, while others may need just one.

The following example demonstrates how to add two registers together in ARM
assembler.

ADD R0 , R2 , R3 ; R0 = R2 + R3

"ADD" is a mnemonic for arithmetic addition, register R0 is the destination operand,
and registers R2 and R3 are two source operands.

Note: Assembly code can be assembled by either Arm assembler (armasm) or assembly
tools from a variety of vendors (e.g. GNU tool chain). When using the GNU tool chain, the
syntax for labels and comments is slightly different.

The instructions in the Cortex-M3 and Cortex-M4 processors can be divided into
various groups based on functionality:

• Moving data within the processor
• Memory accesses
• Arithmetic operations
• Logic operations
• Shift and Rotate operations
• Conversion (extend and reverse ordering) operations
• Bit field processing instructions
• Program flow control (branch, conditional branch, conditional execution, and func-

tion calls)
• Multiply accumulate (MAC) instructions
• Divide instructions
• Memory barrier instructions
• Exception-related instructions
• Sleep mode-related instructions
• Other functions
In addition, the Cortex-M4 processor supports the Enhanced DSP instructions:
• SIMD operations and packing instructions
• Adding fast multiply and MAC instructions
• Saturation algorithms
• Floating point instructions (if the floating point unit is present)

1.9.1 Moving data within the processor

Moving data within the processor might be:
→ Move data from one register to another
→ Move data between a register and a special register (e.g., CONTROL, PRIMASK,

FAULTMASK, BASEPRI)
→ Move an immediate constant into a register

36 Chapter 1. Introduction to ARM Cortex Processors

Table 1.2 shows some examples of these operations:

Table 1.2: Instructions for Transferring Data within the Processor

Instruction Dest Source Operations

MOV R4, R0 ; Copy value from R0 to R4

MOVS R4, R0 ; Copy value from R0 to R4 with APSR (flags) update

MRS R7, PRIMASK ; Copy value of PRIMASK (special register) to R7

MSR CONTROL, R2 ; Copy value of R2 into CONTROL (special register)

MOV R3, #0x34 ; Set R3 value to 0x34 (immediate value is 8-bit)

MOVS R3, #0x34 ; Set R3 value to 0x34 with APSR update

MOVW R6, #0x1234 ; Set R6 to a 16-bit constant 0x1234

MOVT R6, #0x8765 ; Set the upper 16-bit of R6 to 0x8765

MVN R3, R7 ; Move negative value of R7 into R3

The following conclusions can be drawn from Table 1.2:
• The suffix “S” is appended to the MOV instruction to update the APSR flags based

on the operation’s result.
• The MOVW instruction is used to set a register to a larger immediate value (between

9-bit to 16-bit).
• To set a register to a 32-bit immediate data value, one can utilize a pseudo instruc-

tion called “LDR,” or alternatively, employ a combination of MOVW and MOVT
instructions as explained in the example below.

LDR R0 , = 0x12345678 ; Set R0 to 0x12345678

MOVW R0 , #0x789A ; Set R0 to 0x0000789A
MOVT R0 , #0x3456 ; Set upper 16-bit of R0 to 0x3456,

; now R0 = 0x3456789A

1.9.2 Memory access instructions
There are numerous memory access instructions available in the Cortex-M3 and Cortex-M4
processors. However, for normal data transfers, the instructions available are given in
Table 1.3.
Immediate offset (pre-index)
For “pre-index” addressing, the base register is combined with an immediate constant
value (offset) to calculate the memory address before accessing memory, as shown in the
example below:

LDRB R0 , [R1 , #0x3] ; Read a byte value from address R1+ 0x3,
; and store the read data in R0.

1.9 Instruction Set 37

Table 1.3: Memory Access Instructions for Various Data Sizes

Data Type Load (Read from Memory) Store (Write to Memory)

8-bit unsigned LDRB STRB

8-bit signed LDRSB STRB

16-bit unsigned LDRH STRH

16-bit signed LDRSH STRH

32-bit LDR STR

Multiple 32-bit LDM STM

Double-word (64-bit) LDRD STRD

Stack operations (32-bit) POP PUSH

Table 1.4 shows a list of commonly used load and store instructions.

Table 1.4: Memory Access Instructions with Immediate Offset

Instruction Description

(#offset field is optional)

LDRB Rd, [Rn, #offset] Read byte from memory location (mer. loc.) Rn + offset (8-bit)

LDRSB Rd, [Rn, #offset] Read and signed extend byte from memory location Rn + offset

LDRH Rd, [Rn, #offset] Read half-word from memory location Rn + offset

LDRSH Rd, [Rn, #offset] Read and signed extended half-word from mer. loc. Rn + offset

LDR Rd, [Rn, #offset] Read word from memory location Rn + offset

LDRD Rd1, Rd2, [Rn, #offset] Read double-word from memory location Rn + offset

STRB Rd, [Rn, #offset] Store byte to memory location Rn + offset

STRH Rd, [Rn, #offset] Store half-word to memory location Rn + offset

STR Rd, [Rn, #offset] Store word to memory location Rn + offset

STRD Rd1, Rd2, [Rn, #offset] Store double-word to memory location Rn + offset

R Adding the exclamation mark (!) to the end of all instructions in Table 1.4 will enable
the destination register to hold back the address when the instruction is completed
(the 16-bit versions of these instructions only support low registers (R0-R7) and do
not provide write back.). For example:

LDR R0 , [R1 , #0x8]! ; After the access to memory[R1+0x8]
; R1 is updated to R1+0x8

38 Chapter 1. Introduction to ARM Cortex Processors

PC-related addressing (Literal)
The load instructions in Table 1.4 can generate the address value from the current PC value
and an offset value by replacing the Rn register with PC, as shown in the example below.

LDRB Rd , [PC, #offset] ; Load unsigned byte into Rd using PC offset

Register offset (pre-index)
Another useful address mode is the register offset. This mode is used in the processing of
data arrays where the address is a combination of a base address and an offset calculated
from an index value. The index value can also be shifted by a distance of 0 to 3 bits before
being added to the base register. For example:

LDR R3 , [R0, R2, LSL #2] ; Read memory[R0+(R2≪ 2)] into R3

The shift operation is optional. You can have a simple operation like

STR R5 , [R0, R7] ; Write R5 into memory[R0+R7]

Post-index
Memory access instructions with post-index addressing mode also have an immediate
offset value. However, the offset is not used during the memory access, but is used to
update the address register after the data transfer is completed. This mode is very useful for
processing data in an array. An instruction using this mode is illustrated in the following
example::

LDR R0 , [R1] , #offset ; Read memory[R1], then R1 updated to R1+offset

This addressing mode can be utilized with all the instructions listed in Table 1.4.

R When the post-index memory addressing mode is used, there is no need to use the
exclamation mark (!) sign because the base address register is always updated if the
data transfer is completed successfully.

Multiple load and multiple store
The ARM architecture allows you to read or write multiple data that are contiguous
in memory. The LDM (Load Multiple registers) and STM (Store Multiple registers)
instructions only support 32-bit data. They support two types of pre-indexing:

▶ IA: Increment address After each read/write
▶ DB: Decrement address Before each read/write

The LDM and STM instructions are demonstrated in Table 1.5.
The < reg list > in Table 1.5 is the register list. It contains at least one register, and:
■ Start with “{” and end with “}”
■ Use “-” (hypen) to indicate range. For example, R0-R4 means R0, R1, R2, R3 and

R4.
■ Use “,” (comma) to separate each register

1.9 Instruction Set 39

Table 1.5: Multiple Load/Store Memory Access Instructions

Instruction Description

LDMIA Rn, < reg list > Read multiple words from memory location specified by Rn.

Address Increment After (IA) each read.

LDMDB Rn, < reg list > Read multiple words from memory location specified by Rn.

Address Decrement Before (DB) each read.

STMIA Rn, < reg list > Write multiple words to memory location specified by Rn.

Address increment after each write.

STMDB Rn, < reg list > Write multiple words to memory location specified by Rn.

Address Decrement Before each write.

For example, the following instructions read address 0x20000000 to 0x2000000F (four
words) into R0 to R3:

LDR R4 , =0x20000000 ; Set R4 to 0x20000000 (address)
LDMIA R4 , { R0-R3 } ; Read 4 words and store them to R0 - R3

The register list can be non-contiguous such as { R1, R3, R5-R7, R9, R11-R12 },which
contains R1, R3, R5, R6, R7, R8, R11, R12.

Similar to other load/store instructions, you can use write back with STM and LDM.
For example:

LDR R8, =0x8000 ; Set R8 to 0x8000 (address)
STMIA R8! , { R0-R3 } ; R8 change to 0x8010 after the store

Stack push and pop
Stack push and pop are another form of the store multiple and load multiple. They use the
currently selected stack pointer for address generation, which can either be the Main Stack
Pointer (MSP), or the Process Stack Pointer (PSP). Table 1.6 shows the syntax of these
Instructions.

Table 1.6: Stack Push and Stack POP Instructions for Core Registers

Example of Stack Operations Description

PUSH < reg list > Store register(s) in stack.

POP < reg list > Restore register(s) from stack.

The register list syntax is the same as LDM and STM. For example:

PUSH {R0 , R4-R7 , R9} ; PUSH R0, R4, R5, R6, R7, R9 into stack
POP {R2 , R3} ; POP R2 and R3 from stack

40 Chapter 1. Introduction to ARM Cortex Processors

1.9.3 Arithmetic operations

The most commonly used arithmetic instructions for Cortex-M3 and Cortex-M4, including
ADD (addition), SUB (subtraction), MUL (multiplication), and UDIV/SDIV (unsigned
and signed division), are shown in Table 1.7.

Table 1.7: Instructions for Arithmetic Data Operations

Commonly Used Arithmetic Instructions Operation

ADD Rd , Rn , Rm ; Rd = Rn + Rm ADD operation

ADD Rd , Rn , #immed_8 ; Rd = Rn + #immed

ADC Rd , Rn , Rm ; Rd = Rn + Rm + carry ADD with carry

ADC Rd , #immed_8 ; Rd = Rd + #immed + carry

ADDW Rd , Rn , #immed ; Rd = Rn + #immed ADD register with 12-bit

immediate value

SUB Rd , Rn , Rm ; Rd = Rn - Rm SUBTRACT

SUB Rd , #immed_8 ; Rd = Rd - #immed

SUB Rd , Rn , #immed_8 ; Rd = Rn - #immed

SBC Rd , Rn , #immed_8 ; Rd = Rn - #immed - borrow SUBTRACT with borrow

SBC Rd , Rn , Rm ; Rd = Rn - Rm - borrow

SUBW Rd , Rn , #immed ; Rd = Rn - #immed SUBTRACT register with

12-bit immediate value

RSB Rd , Rn , #immed_8 ; Rd = #immed - Rn Reverse subtract

RSB Rd , Rn , Rm ; Rd = Rm - Rn

MUL Rd , Rn , Rm ; Rd = Rn * Rm Multiply (32-bit result)

UDIV Rd , Rn , Rm ; Rd = Rn / Rm Unsigned and signed divide

SDIV Rd , Rn , Rm ; Rd = Rn / Rm

The instructions in Table 1.7 can be used with or without the “S” suffix to specify
whether the APSR should be updated or not, as shown in the following example.

ADD R0 , R1 , R2 ; Flag unchanged
ADDS R0 , R1 , R2 ; Flag change

Both the Cortex-M3 and Cortex-M4 processors support 32-bit multiply instructions
and multiply accumulate (MAC) instructions that give 32-bit and 64-bit results as shown
in Table 1.8.

1.9 Instruction Set 41

Table 1.8: Instructions for Multiply and MAC (Multiply Accumulate)

Instructions (no “S” suffix, APSR is not updated) and Description

MLA Rd, Rn , Rm , Ra ; Rd = Ra + Rn * Rm

32-bit MAC (Multiply Accumulate) instruction, 32-bit result

MLS Rd , Rn , Rm , Ra ; Rd = Ra - Rn * Rm

32-bit MLS (Multiply and Subtract) instruction, 32-bit result

SMULL RdLo, RdHi, Rn, Rm ; { RdHi , RdLo } = Rn * Rm

32-bit SMULL (Signed Multiply Long) instruction for signed values, 64-bit result

SMLAL RdLo, RdHi, Rn, Rm ; { RdHi , RdLo } += Rn * Rm

32-bit SMLAL (Signed Multiply Accumulate Long) instruction, it adds the 64-bit

product to the value stored in registers RdLo and RdHi.

UMULL RdLo, RdHi, Rn, Rm ; { RdHi,RdLo } = Rn * Rm

32-bit (Unsigned Multiply Long) instruction for unsigned values, 64-bit result

UMLAL RdLo, RdHi, Rn, Rm ; { RdHi , RdLo } += Rn * Rm

32-bit UMLAL (Unsigned Multiply Accumulate Long) instruction, 64-bit result.

1.9.4 Logic operations
The commonly used logic operation instructions, such as AND, OR, exclusive OR and
so on, are given in Table 1.9. The 16-bit versions of these instructions update the flags
in APSR. If the “S” suffix is not specified, the assembler will convert them into 32-bit
instructions.

R To use the 16-bit versions of Table 1.9 instructions, the operation must be between
two registers with the destination being one of the source registers. Also, the registers
used must be low registers (R0-R7), and the “S” suffix should be used (APSR update).
The ORN instruction is not available in 16-bit form.

1.9.5 Shift and rotate instructions
As shown in Figure 1.30, the second ALU operand is equipped with Barrel shifter, which
is special digital circuit quick shift rotation. The various shift and rotate instructions are
shown in Table 1.10 and illustrated in Figure 1.31.

1.9.6 Data conversion operations (extend and reverse ordering)
When a signed integer is converted to another signed integer with more bits, the sign
bit (i.e., the most significant bit or the leftmost bit) should be duplicated to maintain the
integer’s sign. Duplicating the sign bit is called sign extension. When an unsigned integer
is converted to another unsigned integer with more bits, zero extension is deployed to

42 Chapter 1. Introduction to ARM Cortex Processors

Table 1.9: Instructions for Logical Operations

Instruction (optional S suffix not shown) Description

AND Rd, Rn ; Rd = Rd & Rn Bitwise AND

AND Rd , Rn , #immed ; Rd = Rn & #immed

AND Rd , Rn , Rm ; Rd = Rn & Rm

ORR Rd , Rn ; Rd = Rd | Rn Bitwise OR

ORR Rd , Rn , #immed ; Rd = Rn | #immed

ORR Rd , Rn , Rm ; Rd = Rn | Rm

BIC Rd , Rn ; Rd = Rd & (~Rn) Bit clear

BIC Rd , Rn , #immed ; Rd = Rn & (~#immed)

BIC Rd , Rn , Rm ; Rd = Rn & (~ Rm)

ORN Rd , Rn , #immed ; Rd = Rn | (~#immed) Bitwise OR NOT

ORN Rd , Rn , Rm ; Rd = Rn | (~Rm)

EOR Rd , Rn ; Rd = Rd ^ Rn Bitwise Exclusive OR

EOR Rd , Rn , #immed ; Rd = Rn ^ #immed

EOR Rd , Rn , Rm ; Rd = Rn ^ Rm

Figure 1.30: Barrel shifter for quick shift rotation

1.9 Instruction Set 43

Table 1.10: Instructions for Shift and Rotate Operations

Instruction (optional “S” suffix not shown) Description

LSL Rd, Rn,#immed ; Rd = Rn << immed Logical shift left

LSL Rd, Rn ; Rd = Rd << Rn

LSL Rd, Rn, Rm ; Rd = Rn << Rm

LSR Rd, Rn,#immed ; Rd = Rn >> immed Logical shift right

LSR Rd, Rn ; Rd = Rd >> Rn

LSR Rd, Rn, Rm ; Rd = Rn >> Rm

ASR Rd, Rn,#immed Rd = Rn >> immed Arithmetic shift right

ASR Rd, Rn ; Rd = Rd >> Rn

ASR Rd, Rn, Rm ; Rd = Rn >> Rm

ROR Rd, Rn ; Rd rot by Rn Rotate right

ROR Rd, Rn, Rm ; Rd = Rn rot by Rm

RRX Rd, Rn ; {C, Rd} = {Rn, C} Rotate right extended

Figure 1.31: Shift and rotate operations.

44 Chapter 1. Introduction to ARM Cortex Processors

place zeros in the upper bits of the output. The example blow clarify the principal of this
conversion.

int_8 a = -1; // a signed 8-bit integer, a = 0xFF
int_16 b = -2; // a signed 16-bit integer, b = 0xFFFE
int_32 c; // a signed 32-bit integer
c = a; // sign extension, c = 0xFFFFFFFF
c = b; // sign extension, c = 0xFFFFFFFE

uint_8 d = 1; // an unsigned 8-bit integer, d = 0x01
uint_32 e; // an unsigned 32-bit integer
e = d; // zero extension, e = 0x00000001

The following program shows how to use instructions of sign and zero extension.
Assume the value of register r0 is 0x11228091.

SXTB r1, r0 ; r1 = 0xFFFFFF91, sign extend a byte
SXTH r1, r0 ; r1 = 0xFFFF8091, sign extend a halfword
UXTB r1, r0 ; r1 = 0x00000091, zero extend a byte
UXTH r1, r0 ; r1 = 0x00008091, zero extend a halfword

Instructions for reversing bits or bytes are often employed to convert data between
little-endian and big-endian formats. These instructions are listed in Table 1.11, and the
process of reversal is illustrated in Figure 1.32.

Table 1.11: Instructions for Bit and Byte Order Reversal

Instruction Description

RBIT Rd, Rn Reverse bit order in a word.

for (i = 0; i < 32; i++) Rd[i]←Rn[31- i]

REV Rd, Rn Reverse byte order in a word.

Rd[31:24]← Rn[7:0], Rd[23:16]←Rn[15:8],

Rd[15:8]← Rn[23:16],Rd[7:0]← Rn[31:24]

REV16 Rd, Rn Reverse byte order in each halfword.

Rd[15:8]← Rn[7:0], Rd[7:0]←Rn[15:8],

Rd[31:24]← Rn[23:16],Rd[23:16]← Rn[31:24]

REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend.

Rd[15:8]← Rn[7:0], Rd[7:0]←Rn[15:8],

Rd[31:16]← Rn[7] & 0xFFFF

1.9 Instruction Set 45

Figure 1.32: Reverse bit or byte order

1.9.7 Bit-field processing instructions

To make the Cortex-M3 and Cortex-M4 processor an excellent architecture for control
applications, these processors support a number of bit-field processing operations,as listed
in Table 1.12.

The following example shows the use of BFC and BFI instructions:

LDR R0, =0x1234FFFF
BFC R0, #4, #8 ; after execution, R0 will be 0x1234F00F

LDR R0, =0x12345678
LDR R1, =0x1133AACC
BFC R0, R1, #8, #16 ; after execution, R0 will be 0x115678CC

The use of instructions UBFX and SBFX, which extract adjacent bits from one register,
are demonstrated in the following example:

LDR R0, =0x7934CADF
UBFX R1, R0, #4, #8 ; after execution, R1 will be 0x000000AD

LDR R0, =0x1278C0AE
SBFX R1, R0, #4, #8 ; after execution, R1 will be 0xFFFFFF0A

46 Chapter 1. Introduction to ARM Cortex Processors

Table 1.12: Instructions for Bit-Field Processing

Instruction Operation

BFC Rd, #<lsb>, #<width> Bit Field Clear.

Rd[(width+lsb-1):lsb]← 0

BFI Rd, Rn, #<lsb>, #<width> Bit Field Insert.

Rd[(width+lsb-1):lsb]← Rn[(width-1):0]

RBIT Rd, Rn Reverse BIT order in register

Unsigned Bit Field Extract

UBFX Rd, Rn, #<lsb>, #<width> Rd[(width-1):0]← Rn[(width+lsb-1):lsb]

Rd[31:width]← Replicate(0)

Signed Bit Field Extract

SBFX Rd, Rn, #<lsb>, #<width> Rd[(width-1):0]← Rn[(width+lsb-1):lsb]

Rd[31:width]← Replicate(Rn[width+lsb-1])

1.9.8 Compare and test
The compare and test instructions are used to update the flags in the APSR, which may
then be used by a conditional branch or conditional execution. Table 1.13 listed these
instructions.

Table 1.13: Instructions for Compare and Test

Instruction Mnemonic Operation Explanation

CMP <Rn>, <Rm>; Compare Set NZCV flags on Rn - Rm (result is not stored).

CMP <Rn>, #<immed> Compare Set NZCV flags on Rn - immediate data.

CMN <Rn>, <Rm>; Compare negative Set NZCV flags on Rn + Rm.

CMN <Rn>, #<immed> Compare negative Set NZCV flags on Rn + immediate data.

TST <Rn>, <Rm>; Test (bitwise AND) Set NZ/C flags on Rn AND Rm .

TST <Rn>, #<immed> Test (bitwise AND) Set NZ/C flags on Rn AND immediate data .

TEQ <Rn>, <Rm>; Test equivalence Set NZ/C flags on Rn EOR Rm .

TEQ <Rn>, #<immed> Test equivalence Set NZ/C flags on Rn EOR immediate data .

R
1. The results for the compare and test listed instructions are not stored.
2. For TST and TEQ, they are bitwise instructions and update the N and Z flags

only, and the C flag if a barrel shifter is used.

1.9 Instruction Set 47

1.9.9 Program flow control

There are several types of instructions for program flow control:
■ Branch
■ Function call
■ Conditional branch
■ Combined compare and conditional branch
■ Conditional execution (IF-THEN instruction)
■ Table branch

Branch

A number of instructions can cause branch operations:
▶ Branch instructions (e.g., B, BX)
▶ A data processing instruction that updates R15 (PC) (e.g., MOV, ADD)
▶ A memory read instruction that writes to PC (e.g., LDR, LDM, POP)
The most basic branch instructions are given in Table 1.14.

Table 1.14: Unconditional Branch Instructions
Instruction Operation

B <label> Branch to label. If a branch range of over +/−2KB is needed,

B.W <label> you might need to specify B.W to use 32-bit version of branch
instruction for wider range.

BX <Rm> Branch and eXchange. PC = Rm

Function calls

To call a function, the Branch and Link (BL) instruction or Branch and Link with eXchange
(BLX) instructions can be used (Table 5.32). They execute the branch and at the same time
save the return address to the Link Register (LR).

Table 1.15: Instructions for Calling a Function

Instruction Description

BL <label> Branch with Link. LR = PC + 4; PC = label

BLX <Rm> Branch with Link and eXchange. LR = PC + 4; PC = Rm

Notes:
• Since the Cortex-M3 and M4 processors only support the Thumb state, the LSB of

the register used in a BLX operation must be set to 1. Otherwise, it indicates an
attempt to switch to the ARM state and will result in a fault exception.
• Before using the BL instruction, you should save your LR beforehand if you need

its actual value by pushing it to the stack.

48 Chapter 1. Introduction to ARM Cortex Processors

Conditional branches
Conditional branches are executed conditionally based on the NZCV flags of the APSR
register, which can be affected by the following:
• Most of the 16-bit data processing instructions
• 32-bit (Thumb-2) data processing instructions with the S suffix; for example ADDS
• Compare (e.g., CMP) and Test (e.g., TST, TEQ)
• Write to APSR/xPSR directly

The branch condition is indicated by a suffix attached to the B instruction. If the branch
range is greater than ±250 bytes, the 32-bit version of the branch through B.W instruction
is used, as shown in Table 1.16.

Table 1.16: Instructions for Conditional Branch
Instruction Operation

B<cond> <label> Branch to label if condition is true. E.g.,

B<cond>.W <label> CMP R0, #1 ; compare the content of R0 with 1

BEQ loop ;suffix “EQ” is for equal

By appending the 14th conditional suffixes to the branch instruction “B”, Table 1.17
summarizes the resulting conditional branch instructions.

A simple conditional branch example can be illustrated through the program flow
depicted in Figure 1.33, which can be implemented using conditional branch and simple
branch instructions:

Figure 1.33: Simple condition branch

CMP R0, #1 ; compare R0 to 1

BEQ p2 ; if Equal , then go to p2

MOVS R3, #1 ; R3 = 1

B p3 ; go to p3

p2 ; label p2

MOVS R3, #2 ; R3 = 2

p3 ; label p3

1.9 Instruction Set 49

Table 1.17: Instructions Description and Flags Tested

Instruction Description Flags Tested

BEQ <label> ; Branch if EQual Z = 1

BNE <label> ; Branch if Not Equal Z = 0

BCS/BHS <label> ; Branch if Unsigned Higher or Same C = 1

BCC/BLO <label> ; Branch if Unsigned LOwer C = 0

BMI <label> ; Branch if MInus (Negative) N = 1

BPL <label> ; Branch if PLus (Positive or Zero) N = 0

BVS <label> ; Branch if oVerflow Set V = 1

BVC <label> ; Branch if oVerflow Clear V = 0

BHI <label> ; Branch if Unsigned HIgher C = 1 & Z = 0

BLS <label> ; Branch if Unsigned Lower or Same C = 0 or Z = 1

BGE <label> ; Branch if Signed Greater or Equal N = V

BLT <label> ; Branch if Signed Less Than N != V

BGT <label> ; Branch if Signed Greater Than Z = 0 & N = V

BLE <label> ; Branch if Signed Less than or Equal Z = 1 or N != V

. ; other subsequent operations

Another example showing the comparison of two signed integers 0xFFFFFFFF and
0x00000001 through the implementation of an if -statement in C and assembly language is
shown in Table 1.18. .

Compare and branches
It is common for an assembly program to compare against zero before branching. So, the
ARMv7-M architecture provides two compare and branch instructions, CBZ (Compare
and Branch if Zero) and CBNZ (Compare and Branch if Non Zero). CBZ and CBNZ are
very useful in loop structures such as while loops. Table 1.19 shows how to use CBZ to
implement while-statement.

Conditional execution (IF-THEN instruction)
Besides conditional branches, Cortex-M3 and Cortex-M4 processors also support condi-
tional execution using the IT instruction, which forms the IT block. The syntax of this
instruction comes with three optional suffixes of “T” (then) and “E” (else), noted by (x, y
,z) in the instruction syntax:

IT{x{y{z}}} cond

Where:

50 Chapter 1. Introduction to ARM Cortex Processors

Table 1.18: Implementation of if -statement that compares two signed integers

C Program Assembly Program

signed int x, y, z;

x = 1; // example

y = -1; // 0xFFFFFFFF

if (x > y)

z = 1;

else

z = 0;
then

endif

MOVS R5, #0x00000001 ; R5 - x

MOVS R6, #0xFFFFFFFF ; R6 - y

CMP R5, R6

BLE then ; branch if signed

MOVS R7, #1 ; z = 1

B endif ; skip next instruction

MOVS R7, #0 ; z = 0

Table 1.19: Implementing while-statement using CBZ instruction

C Program Assembly Program

i = 5;

while (i != 0) {

func1(); //call func1

i--;

}

loop1

loope1exit

MOV R0, #5 ; Set loop counter

CBZ R0, loop1exit ; exit when counter = 0

BL func1 ; call a function

SUBS R0, #1 ; loop counter decrement

B loop1 ; next loop

x, y, z: specify the condition switches for the second, third, and fourth instruc-
tions in the IT block, respectively. They can be either “T” (then) suffix that applies
the condition "cond" to the instruction or “E” (else) suffix that applies the inverse
condition of "cond" to the instruction.

Different combinations of “T” and “E” sequence are possible:
• Just one conditional execution instruction: IT
• Two conditional execution instructions: ITT, ITE
• Three conditional execution instructions: ITTT, ITTE, ITET, ITEE
• Four conditional execution instructions: ITTTT, ITTTE, ITTET, ITTEE, ITETT,

ITETE, ITEET, ITEEE
Table 1.20 listed various forms of IT instruction block sequence and examples:

R In some assembler tools (e.g. Keil MDK-ARM), the assembler can automatically
insert the required IT instruction, as shown in Table 1.21.

Table branches
The Cortex-M3 and Cortex-M4 support two table branch instructions: TBB (Table Branch
Byte) and TBH (Table Branch Half-word), which are often used to implement switch

1.9 Instruction Set 51

Table 1.20: IT Instruction Block of Various Sizes
IT block IT block syntax Example

Only one conditional instruction IT <cond> IT EQ

instr1<cond> ADDEQ R0, R0, R1

Two conditional instructions IT<x> <cond> ITE GE

instr1<cond> ADDGE R0, R0, R1

instr2<cond or w(cond)> ADDLT R0, R0, R3

Three conditional instructions IT<x><y> <cond> ITET GT

instr1<cond> ADDGT R0, R0, R1

instr2<cond or w(cond)> ADDLE R0, R0, R3

instr3<cond or w(cond)> ADDGT R2, R4, #1

Four conditional instructions IT<x><y><z> <cond> ITETT NE

instr1<cond> ADDNE R0, R0, R1

instr2<cond or w(cond)> ADDEQ R0, R0, R3

instr3<cond or w(cond)> ADDNE R2, R4, #1

instr4<cond or w(cond)> MOVNE R5, R3

statements in C code. TBB causes single-byte offsets, while TBH causes half-word offsets.
Their syntax is as follows:

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

Where:
Rn: stores the base address of the branch table. If Rn is the Program Counter (PC) register,
then the address of the table is the address of the byte immediately following the TBB or
TBH instruction.
Rm: Is the branch table index. For halfword tables, LSL #1 doubles the value in Rm to form
the right offset into the table.

Exmaple 01
ADR.W R0, BranchTable_Byte

TBB [R0, R1] ; R1 is the index, R0 is the base address of the branch table.

Case1

; an instruction sequence follows

Case2

; an instruction sequence follows

Case3

; an instruction sequence follows

52 Chapter 1. Introduction to ARM Cortex Processors

Table 1.21: Automatic Insertion of IT Instruction in ARM Assembler
Original Assembler Code Disassembled Assembly Code from Generated Object File

...

CMP R1, #2

ADDEQ R0, R1, #1

...

...

CMP R1, #2

IT EQ

ADDEQ R0, R1, #1

...

BranchTable_Byte

DCB 0 ; Case1 offset calculation.

DCB ((Case2-Case1)/2) ; Case2 offset calculation.

DCB ((Case3-Case1)/2) ; Case3 offset calculation.

Exmaple 02
The following assembly code uses TBB to implement a switch statement, which converts a
numeric score to its corresponding letter grade.

1.9 Instruction Set 53

Table 1.22: Converting Score to letter grade

C Program Assembly Program

unsigned int score;

char grade;

switch(score) {

case 10:

grade = 'A';

break;

case 9:

grade = 'B';

break;

case 8:

grade = 'C';

break;

case 7:

grade = 'D';

break;

case 6:

grade = 'E';

break;

default:

grade = 'F';

}

; R0 = numeric score (0 <= r0 <= 10)

; R1 = Letter grade

SUBS R2, R0, #6 ; R2 is branch index

CMP R2, #5

BHS default ; branch if unsigned R2 >= 5

; R2 is the index;

; PC = PC + 4 + 2 x BranchTable[R2]

TBB [PC, R2] ; Table Branch Byte

BranchTable

DCB (case_6 - BranchTable)/2 ; index = 0

DCB (case_7 - BranchTable)/2 ; index = 1

DCB (case_8 - BranchTable)/2 ; index = 2

DCB (case_9 - BranchTable)/2 ; index = 3

DCB (case_10 - BranchTable)/2 ; index = 4

ALIGN

case_10

MOV R1, #0x41 ; ASCII 'A' = 0x41

B exit

case_9:

MOV R1, #0x42 ; ASCII 'B' = 0x42

B exit

case_8:

MOV R1, #0x43 ; ASCII 'C' = 0x43

B exit

case_7:

MOV R1, #0x43 ; ASCII 'D' = 0x44

B exit

case_6:

MOV R1, #0x43 ; ASCII 'E' = 0x45

B exit

default:

MOV R1, #0x43 ; ASCII 'F' = 0x46

B exit

exit

	Part I — Introduction to ARM Cortex Processors
	1 Introduction to ARM Cortex Processors
	1.8 Exceptions and interrupts
	1.9 Instruction Set

