
Algorithms and Data Structures 2 Chapter 3: Pointers

Chapter 3: Pointers and Linked Lists

1. Introduction
We saw in the first semester that the program is a set of data and a set of instructions where that

data is stored in memory as variables.

A variable is a location in memory that has a storage address, name, type, and value.

 Address: Each variable stored in memory has an address that indicates its location. It is a

natural number that identifies the first byte in which the variable is located. Usually, it is

written in the hexadecimal system 16, such as: 0x5A63

 Name: An identifier used by the programmer to refer to the stored value and the name of

the variable is manipulated instead of the address. E.g. weight

 Type: Everything in a computer is made up of 0s and 1s. The type determines how to

translate them, as well as the size that should be reserved in memory, i.e. the number of

bits and operations allowed. Example: int (32-bit)

 Value: This is the content of the bits that make up its value, and it's usually the thing that

changes during program execution, such as: 15

When the program executes and encounters a variable declaration statement, such as int age ;),

the program instructs the operating system (Windows) to reserve a memory space of size x

(depending on the type). And after reservation, the system returns the memory address that can

be used as a variable.

To get the value of the variable, you just have to write its name, but to get its address, i.e. its

location in memory, in algorithm we put the @ symbol before the variable name , and in C

we put the & symbol before the variable name .

Example:

write("value of age=", age," its address=",@age);

printf("value of age = %d its address = %p",age,&age);

%p is a format for treating the &age value as an address in memory, i.e. a number written in

hexadecimal 16. We can use %d to see it in decimal. Here, age is the value of the variable and

&age is its address in memory where it can change each time we run the program.

Algorithms and Data Structures 2 Chapter 3: Pointers

2. Pointers
A pointer is a variable whose value points to an address in the computer's memory. This address

is either a variable or a program. It's used to pass parameters by address, dynamically reserve

memory, or define recursive types (lists, stacks, and queues), and it has other uses.

The Creation

To create a pointer variable, in the algorithm we add the symbol ^ in front of the variable type.

Where it takes the following form:

To create a pointer variable in C, we add * before the variable name

Here ^ or * indicates that the variable is of the pointer type, i.e. a memory address, while type is

the type of the contents of that location.

Example : We declare six variables x and y of integer type, p1 and p2 of type pointer to integer,

z of type real, and pz of type pointer to real.

int x,*p1,y,*p2;

float z,*pz;

Var x, y: integer p1, p2: ^ integer

 z : real pz : ^real

When declaring a variable, it has an undefined value, so it is recommended that it be set to

NULL in uppercase, which means that the pointer is nowhere (defined inside stdio.h, which

represents the number 0)

The variable p1 can take the address of variable x or the value of variable p2, but it cannot take

the address of variable z, the address of p2, or the value of pz.

Valid

Transactions

Invalid

transactions
The Explanation

p1=&x; p1=x; p1 is a pointer and x is an integer

p2=p1; p1=&z; p1 is an integer pointer and &z is a real address

pz=&z; pz=p1; pz is a pointer to a real and p1 is a pointer to an integer

Example:

Memory can be thought of as an array numbered from 0 to

memory capacity -1

In the following example, two variables have been reserved, the

first is the integer age located at address 0x0276 and contains the

value 19 here 0x means that the number is written in the

hexadecimal system 16 (0x0276 = 630 in the decimal system).

The second variable is p and its value is 0x0276, which represents

the location of the age. So we say that p points to age.

Variable

Name

Memory

address
Content

 0x0000

 0x0001

p 0x0002 0x0276

 0x0003

age 0x0276 19

 0x0277

 0x0278

p1= NULL;

Type

*P1,*P2;

var p1, p2 :^type

Algorithms and Data Structures 2 Chapter 3: Pointers

 p2=&p1 ; P2 is a pointer to an integer, but &p1 is the address of a

pointer to an integer.

 p1=&(0x0276); Must be a variable, not a number.

We need to differentiate between the address stored in the pointer and the address of the pointer

itself, because the pointer is a variable that has an address like the rest of the variables, and

therefore its address can be assigned to another pointer, but in this case the second type of

pointer must be the address of a pointer of the first type.

For example: x is of integer type (int), and px contains the address of x, so its type is (int*) and

ppx contains the address of px, so its type is (int**) as shown in the following diagram:

Int** Int* Int

 5

ppx Px x

It is declared as follows:

int x,*px,**ppx;

x=5;

px=&x;

ppx=&px;

typedef can be used to create new types and the above statement becomes something like this:

typedef int* pint;

typedef int** ppint;

pint px;

ppint ppx;

Usage:

It's rare that we treat memory addresses as direct numbers, but we treat them as addresses for

existing variables. To get the address of a variable, we use the @ operation in the algorithm or &

in the C programming language before the variable name, and to retrieve the value of the

variable (Dereference) from its address stored in a pointer, we use the symbol ^ after the

variable name in the algorithm and * before the name of the variable in the C programming

language.

p@x ⇒ p^ ⇔ x

p=& x ⇒ *p ⇔ x

Example:

C The

Algorithm

memory The Explanation

int Var x, y:

Algorithms and Data Structures 2 Chapter 3: Pointers

x,*p1,y,*p2; integer
 p1, p2 : ^
integer

x=3;

y=4;
x3

y4

x 3 p1

y 4 p2

p1=&x;

p2=&y;
p1@x

p2@y

x 3 p1

y 4 p2

Here p1 contains the address of x

and p2 contains the address of y

*p1=5; p1^5

x 5 p1

y 4 p2

We assign the number 5 to the variable

whose address is at p1, and at this point it

is the variable x, as if the variable x had a

second name, which is *p1

can be replaced by the x=5 statement;

p1=p2; p1 p2

x 5 p1

y 4 p2

We assign the value of p2, which

represents the address of y, to p1, so that

y, *p1, and *p2 become the same variable

at that time.

*p1=6; p1^6

x 5 p1

y 6 p2

We assign the digit 6 to the variable

whose address is in p1 and at this point it

is the variable y

can be replaced by the y=6 statement; or

*p2=6;

Notes:

 To understand pointers, it is always recommended to draw variables, where the pointer

carries an arrow to the variable that carries its address, and we symbolize the pointer that

has a value of NULL, i.e. it does not point to any place with

 A pointer is always of a simple type, while the variable whose address it contains can be

of a complex type (array or structure).

 Attempting to retrieve the value of an uninitialized pointer or a NULL value causes the

program to terminate.

 A value (variable address) must be assigned to the pointer before attempting to

retrieve the value it points to.

 Before you retrieve the value that the pointer is pointing to, you must make sure

that it is not null.

 It is now possible to understand the passing of parameters by address in subroutines.

Example

C memory The Explanation

Algorithms and Data Structures 2 Chapter 3: Pointers

void exchange(int *x, int *y){

int t;

t=*x;

*x=*y;

*y=t;

}

int a=5,b=3;

exchange(&a,&b);

has 5 3 b

 *x

has 3 &a x

b 5 &b y

 *y

Here x and y are two pointers

and when calling the function

we assign x the address of

variable a i.e. x=&a and y the

address of variable b i.e. y=&b

and inside the function

exchange to obtain the

variable whose address x

carries we use the operation *

where *x at this moment

represents the variable a and

*y represents the variable b

3. Pointer Operations
Suppose that P and Q are pointers and i is an integer. The following table summarizes the

operations that can be performed on pointers:

Algorithm

operation

Operation

C

Type of 2nd

Operator

Type of

result

Example Observation

+ + Int Pointer P + i Returns a pointer to the i
th

 element after P

in an array

 ++ Pointer P++ Returns a pointer to the next immediately P

element in an array

- - Int Pointer P – i Returns a pointer to the i
th

 element before P

in an array

 -- Pointer P-- Returns a pointer to the element

immediately preceding P in an array

- - Pointer of the

same type

Int P - Q Returns the number of items between P and

Q where P and Q should point to the same

array

= == Pointer Boolean P == Q This is true if P and Q have the same

address, i.e. they point to the same place

≠ != Pointer Boolean P != Q This is true if P and Q are different

^ * Value Type *P To retrieve the value whose address it

contains

4. Dynamic Memory Management
The method we know so far for reserving variables in memory is called static reservation, where

the variable is declared at the beginning of the program, and the compiler reserves the necessary

memory automatically, and the variable is not removed until the end of the execution of the

program (or subroutine in the case of a local variable). But sometimes we need to reserve an

amount of memory, whether it's an array with N elements, for example, and N can only be

known at runtime, so we declare a pointer and when N becomes available, we reserve the array.

The developer has a set of functions that allow them to manage memory dynamically, i.e., during

runtime.

In algorithm:

Algorithms and Data Structures 2 Chapter 3: Pointers

There are three procedures for dynamic memory management:

1. allocate() to reserve an array where it takes as a parameter the name of the pointer

(name of the array) and the number of elements

Allocation(nom_tab,nb_elements)

Example:

Allocation(T,10)

2. reallocation() to change the size of the array, either by increasing or decreasing, and

takes as a parameter the name of the pointer (the name of the array) and the new

number of elements (new size), it preserves the values of the previously reserved

elements and removes the excess or adds new elements to the array

reallocate (nom_tab, nouvelle_taille)

Example:

Reallot(T,15)

3. dealallocate() to delete the reserved array with allocate() and takes as a parameter the

name of the pointer (name of the array)

deallocate (nom_tab)

Example:

deallocate

After creating an array t by allocate(), its elements can be accessed by square brackets [] or by

the retrieval operation ^, where we know that the pointer t contains the address of the first

element t[0] i.e. @t[0]= t and t^=t[0] and to get The address of the second element t[1] adds 1 to

t i.e. @t[1] t+1 and (t+1)^  t[1] so the address of t[i] is t+i. i.e. @t[i](t+i) and (t+i)^

t[i].

Example:

algorithm memory The Explanation

var t : ^real

 n:integer

t n

A pointer t and a variable n representing

the number of its elements are declared

beginning

write("enter number of

elements")

read(n)

t n

 3

Let n take 3

Allocation(t ,n) t

allocate() reserves an array of three

elements and sets its address to t

t[0] 1 t[1] 2 t[2] 3

t^ 1 (t+1)^ 2 (t+2)^ 3

t

 1 2 3

We fill in the table where we can use the

square brackets [] or use ^ where t[i] ⇔

(t+i)^

reallouer(t,n+2) t

 1 2 3

Calling reallouer() resizes the array to 5

Algorithms and Data Structures 2 Chapter 3: Pointers

t[3] 4 t[4] 5

(t+3)^ 4 (t+4)^ 5 

t

 1 2 3 4 5

We fill in the two added elements

deallocate t n

 3

We call dealdeal() to remove the array

In C

Memory management in C is a little different than algorithms, and before we can learn more, we

need to learn sizeof and type switching.

4.1. The "sizeof" operation
A variable takes up more or less memory space depending on its type. As a variable of type char

takes one byte, whereas a variable of type int requires two or four bytes, depending on version C.

To find out the size required for a type, we use sizeof(), which takes the name of the variable or

the name of the type to return the number of bytes it needs in memory.

int sizeof(type);

Example:

float t[20];

printf("char: %d bytes\n", sizeof(char));

printf("int : %d bytes\n", sizeof(int));

printf("double: %d bytes\n", sizeof(double));

printf("the size of t: %d bytes\n", sizeof(t));

printf("the size of t:%d bytes\n", 20*sizeof(float));

that displays on the screen

char: 1 byte

int: 4 bytes

Double: 8 bytes

T size: 80 bytes

T size: 80 bytes

The size of an array can be found by multiplying the size of a single element by the number of

elements.

4.2. Type Change: Typing/Casting
Sometimes we need to convert a specific value from one type to another, and to force the

compiler to change the type of a specific value, we use the following formula:

(type) expression

Where the expression is converted to type

Example 1

int A=8,B=3;

float R=A/B; Since operators A and B are integers, the /

Algorithms and Data Structures 2 Chapter 3: Pointers

operation performs an integer division R=8/3

printf("no casting R=%f \n",R); poster no casting R=2.000000

R=(float)A/B; We convert the value of A (not the variable

A) to a real number, and then we do the

dividing process, so that the operation

becomes R = 8.0/3

printf("with casting R=%f

\n",R);
poster with casting R=2.6666666

Example 2

int x,*p1; An integer and an integer pointer

float y=2,*p2; A real number and a pointer to a real number

x=(int)y; It converts the value of y to an integer and puts it in x, so x takes

the value 2

p2=&y; p2 takes the address of y

p1=(int*)p2; Converting the address of a float to the address of an int, but the

address of the variable remains in both variables, which is the

address of y

x y

2 2.0 *p2/*p1

p1 p2

printf("x=%d \n",x); Displays x=2

printf("*p2=%f

\n",*p2);
Displays *p2=2.000000 the same as y

printf("*p1=%d

\n",*p1);

Poster *p1=1073741824

Because translating the bits of a real number into an integer does

not give the same number

4.3. Memory Management in C
Dynamic memory management in C is done using four functions defined in the stdlib library:

 malloc() ،(memory allocation This means to reserve memory) It instructs the operating

system to reserve the required amount of memory.

void * malloc(int size);

It takes as a parameter the required memory size (the number of bytes) and returns a pointer

to the memory that has been reserved, or returns NULL if the process fails because the

required size is not available.

Example:

float *t;

t=(float *)malloc(10*sizeof(float));

t= (float *) malloc(10* sizeof(float));

Table
Name

Convert to
Pointer Type

To reserve
the table

Number of
items

The size of each
element

Type of each
element

Algorithms and Data Structures 2 Chapter 3: Pointers

 free(), to return memory previously reserved by the operating system's malloc so that it

can be used by other programs.

void free(void * pointer);

Takes a previously reserved pointer as a parameter. It is recommended that you set the

pointer to NULL after calling free to ensure that the pointer is nowhere to be found and to

avoid any errors.

Example:

free(t);

 realloc(), to change the size of the reserved memory, either by increasing or decreasing.

void * realloc(void * pointer, int nouvelle_taille);

Where the function calls malloc to reserve a new place of the size of the nouvelle_taille, then

copies all the values from the "pointer" array to the new location (or deletes the extra elements if

the nouvelle_taille is smaller than the old size), then deletes the old reserved array by calling

free, and if the operation succeeds, it returns a pointer to the new location otherwise returns

NULL.

Example:

t=(float*)realloc(t, 20*sizeof(float));

 calloc(), like malloc, except that it puts zeros in the reserved memory.

void * calloc(int nb_element, int taille_element);

It takes nb_element, which represents the number of items in the table, and taille_element,

which represents the size of a cell, and returns a pointer to the placeholder.

Example:

t=(float*)calloc(10,sizeof(float));

Observation:

 In the function lesson, we saw that void means that the function returns nothing, but

void* means that the function returns a pointer of type undefined.

 The void* type must be converted to the pointer type that will contain the address by

placing the pointer type in parentheses before the malloc, calloc, and realloc function

names, but this conversion is not necessary in C++.

 To use these functions, you must call the stdlib or alloc library using the following

statement:

#include <stdlib.h>

#include <alloc.h>

The sizeof operation is not a function, so parentheses can be omitted.

When we reserve memory, we follow these steps:

1. We reserve memory with malloc.

2. We make sure that the booking process has completed successfully by using if

(pointer! = NULL)

3. When we are done using the placeholder, we return the memory to the system via free

Example

Algorithms and Data Structures 2 Chapter 3: Pointers

C The Explanation

#include <stdio.h>

#include <stdlib.h>

Inclusion of the STDLIB library

int main(void) {

 char *str;

Declaring a char pointer

str = (char *) malloc(4*sizeof(char)); Book a table for 4 characters

str[0]='A'; str[1]='S'; str[2]='D';

str[3]='\0';

We populate the array with the string "ASD"

using [] and the symbol '\0' to indicate the end

of the string.

*str='A'; *(str+1)='S'; *(str+2)='D';

*(str+3)='\0';

We populate the array with the literal string

"ASD" using the retrieval operation * where

*(str+i) ⇔ str[i]

printf("String is %s\n Address is %p\n",

str, str);

To display the string and its address, where we

note that & is not used because str is an

address

str = (char *) realloc(str,

5*sizeof(char));

Changed the capacity of the table from 4 to 5

str[3]='2'; str[4]='\0'; We fill in the last two characters so that the

string becomes "ASD2" *(str+3)='2'; *(str+4)='\0';

printf("String is %s\n New address is

%p\n", str, str);

Displays the string "ASD2" and its new

address

free(str);

return 0;

}

Return Reserved Memory

4.4. Pointers and matrices in C
C-matrices are an array in which each element is an array. We want to create an M[3][4] matrix

with 3 rows and 4 columns.

Suppose we have 3 arrays M0, M1, M2

float M0[4],M1[4],M2[4] ;

These tables can be created using pointers

float *M0,*M1,*M2;

M0=(float *)malloc(4*sizeof(float));

M1=(float *)malloc(4*sizeof(float));

M2=(float *)malloc(4*sizeof(float));

Note that M0, M1 and M2 are all of the same type (float *), so they can be replaced by an array

M of type (float *).

float * M[3];

for(int i=0; i<3; i++)

 M[i]=(float *)malloc(4*sizeof(float));

Now, pointers can be used to create table M

C memory The Explanation

float **M; M

An M pointer is declared to be of type float

**

M=(float**) malloc(3*sizeof(float*));

 @ 0

M 1

 2

Array M is created, which contains 3

elements that represent the number of

Algorithms and Data Structures 2 Chapter 3: Pointers

rows, the type of each element is float *

for(int i=0; i<3; i++)

 M[i]=(float*) malloc(4*sizeof(float));

 M 0 1 2 3

@ 0 @
 1 @

 2 @

We create 3 tables, each of which

represents a row in the matrix. 4 is the

number of columns, and the type of each

column is float. *(M+i) can be used instead

of M[i]

Any element of the matrix can be accessed by using [] or by using the retrieval operator * where

M[i][j] ⇔ *(M[i]+j)

M[i][j] ⇔ *(*(M+i)+j)

using typedef

typedef float ** matrix;

typedef float * table;

matrix M;

M=(matrix)malloc(3* sizeof(table));

for(int i=0; i<3; i++)

 M[i]=(table) malloc(4*sizeof(float));

Note : A static array in C is a constant memory address that cannot be changed.

Example:

int *p,t[10];

p=t; Correct because t is the address of the first element
t=p; Not accepted because t is a constant that cannot be

changed.

