University of M 'sila

Faculty of: Technology

Second Series Of Exercises - Phys 02

Exercise 01: Fig.01

In the figure below, bodies are charged with different charge distributions.

Calculate the whole charge for

1/A half thin ring of radius **R** with line distribution of linear charge density $\lambda = \lambda_0 \sin(\theta)$

2/A cylinder of radius **R** and Hight **H** with uniform surface distribution of charge density σ .

3 \prime A Cone of radius **R**, Hight **H** with uniform volume distribution of charge density ρ

4°/*A* sphere of radius **R**, with a volume distribution of density of charge density $\rho = \frac{a}{r}$.

fig.01

Exercise 02: Fig.02

- 1 What is the force exerted by each of these charges on the other?
- **2**° **a** Sketch, in which zone (left to Q_1 , or between Q_1 and Q_2 , or right to Q_2) a 3rd charge $Q_0 > 0$ to be placed such that it be in equilibrium
 - **b** Determine this distance 'x ' from the charge Q_2 .
- $\mathbf{3}^{\circ}$ If one of them have a charge \mathbf{Q} , what is the charge of the second one, such that the force between these two charges will be maximal?

Exercise 03:

Three point charges, $Q_1(0,0,0) = 2\mu C$, $Q_2(0,a,0) = 8\mu C$ and $Q_3(0,0,a) = -4\mu C$ (the unit of distance is cm), are placed at the vertices of an isosceles right triangle of side "a". 1°- What is the force due to Q_1 , Q_2 , and Q_3 on $Q_4(0,a,a) = -6\mu C$?

2°- What is the field due to these 4 charges at the center of the square formed?

<u>Exercise 04</u>:

- A ring of radius **R** has a uniform distribution of charge of density λ .
- **1**°- What is the force exerted by this ring on the charge -Q located at the distance x from the center and along its axis?
- **2**°- What is the force if the charge -Q is at the center of the ring?
- **3**°- What is the nature of the motion of the charge Q if it is moved away from the center by a small distance x along the axis compared to its radius R ($x \ll R$)?

Exercise 05: (Additional)

Two identical copper pieces, each with a mass m = 2.5 g, containing N = 2022 atoms. We remove n electrons from each piece, then one is placed on a horizontal table and the other just above it at a distance d = 1 m where it remains at rest.

- **1**°- What is the charge Q of each piece maintaining this configuration?
- 2° What is the number n of electrons removed from each piece?
- **3°-** What is the portion of copper whose atoms have lost their electrons (assuming each atom loses only one electron)?

<u>Exercise 06</u>: (Additional)

Four identical point charges ' - Q' placed at the vertices 'A', 'B', 'C' and 'D' of a square of side 'a'. Another charge ' $Q_0 > 0$ ' fixed at the center'O' of this square.

 1° Express Q_0 in terms of the charge Q such that the system will be in electrostatic equilibrium (the total force acting on each of the charges is zero).

If we move the charge Q_0 and then fix it at point $P(0, 0, a\sqrt{2})$ just above the center " O'.

2°/ What is the force exerted by the charges at the vertices on the charge Q_0 at point '**P**'? **3°/** Deduce the electric field created by the **4** charges at the vertices at point 'P'.

Exercise 07 (Additional)

Three charges $q_1 = Q$, $q_2 = 3Q$ and $q_3 = +2Q$ are arranged on the vertices of an equilateral triangle of side a.

Given $\mathbf{Q} = +\mathbf{2} \times \mathbf{10^{-6}C}$ and $\mathbf{a} = \mathbf{3} \times \mathbf{10^{-2} m}$ in the base (\vec{i}, \vec{j})

- 1. Write the position vectors for each charge
- 2. Write the unit vectors for the lines joining the charges
- **3.** Represent and determine the electric forces applied by each of these charges on the charge q_3 .
- **4.** Determine the total force acting on q_3 .
- **5.** Deduce the components of the electric field vector \vec{E} and its intensity.

Exercise 08: (HW)

Three particles each of mass m = 1 g, carrying a charge q. Are suspended from a common point P, by three insulating massless strings, each l = 10 cm long.

If the particles are in equilibrium and located at the corners of an equilateral triangle of side length a = 3 cm

Calculate the charge q of each particle.

