Td N°-1 UEF-1 Master-1 Chimie Organique

Exercice -1

Quelle est la résolution minimum nécessaire pour séparer 2 ions dont les masses exactes sont connues. Prenons le cas du pic présent à m/z= 28, à cette masse il y a en fait deux

R=500, R=1000, R=1500, R=2000, R=2500, R=3000, R=3500.

Exercice -2

Un échantillon de cuivre est injecté dans un spectromètre de masse. Après vaporisation et ionisation de l'échantillon, les ions ⁶³Cu⁺² et ⁶⁵Cu⁺² sont détectés. Quel ion est le plus dévié à l'intérieur du spectromètre ?

Exercice 3

A partir de la simulation du spectre du zirconium ci-dessus, on trouve les masses atomiques et abondances relatives suivantes pour les isotopes du zirconium :

Isotope	Zr-90	Zr-91	Zr-92	Zr-94	Zr-96
Masse atomique (u)	89,905	90,906	91,905	93,906	95,908
Abondance relative (%)	51,45	11,22	17,15	17,38	2,80

A partir du spectre de masse de l'échantillon, calculer la masse atomique relative du zirconium.

Exercice 4

Les spectres de masse de ces deux régioisomères font tous deux apparaître deux pics moléculaires d'égales intensités à 287 et 289 $[MH]^+$.

Pourquoi observe-t-on deux pics sur le spectre de masse des régioisomères A.

Exercice 5

Un hydrocarbure inconnu a un pic d'ions moléculaires à m / z = 84, avec une intensité relative de 31,3. Le pic M + 1 a une intensité relative de 2,06 et le pic M + 2 a une intensité relative de 0,08. quelle est la formule moléculaire de cette substance?