الجمهورية الجزائرية الديمقراطية الشعبية PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA وزارة التعليم العالي والبحث العلمي MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH Mohamed Boudiaf University - M'sila

Faculty of Technology Socle Commun (ST) First Year (ST-REE-ING), 2nd Semester Physics practical work II

2nd Practical Work Electrical Transformer

<u>Date:/</u>		
Professor:		

First Name	Last Name	Group	Sub- Group	Prep Mark	Final Mark

Academic Year: 2023/2024

1. Purpose of the experiment

The purpose of this experiment is to demonstrate the transformation by raising or lowering voltages.

2. Concepts and preparation

In Figure 1, a schematic representation of a transformer is shown. The parameters on the left side represent the primary, while those on the right side represent the secondary. By applying a sinusoidal voltage to the primary circuit, consisting of a winding of "n" turns, what happens on the secondary side with " n_2 " turns?

Let the primary voltage be $U_1 sin(wt + \varphi)$. The current passes through the primary winding around the ferromagnetic core, creating a magnetic flux Φ in the iron, which in turn induces an electromotive force (EMF) "EMF" given by the relation:

$$E_{in} = -n_1 \frac{d\Phi}{dt}$$

For an ideal transformer the voltage U_1 ; of primary is equal to the induced "EMF."

$$E_{in} = -U_1 = -U_0 sin(wt + \varphi).$$

For reasons of high efficiency, the iron is made up of a stack of varnished sheets.

Under these conditions the flux Φ is completely channelled in the iron and will be recovered in the secondary, where it will create an EMF which, in the case of a no-load transformer, will be equal to the voltage which will be delivered by the secondary winding

 $U_2 = -V_0 sin(wt + \beta).$

What's more

$$U_2 = n_2 \frac{d\Phi}{dt}$$

Figure 1

1-Since the flow is conserved. Find the following relationship

$$\frac{U_1}{n_1} = \frac{U_2}{n_2}$$

.....

Therefore, we find the expression of the output voltage (that of the secondary) given by:

$$U_2 = \frac{n_2}{n_1}$$
. $U_1 = m$. U_1

"m" is the transformation ratio

2-What is the condition on "m" for the transformer to be step-up? m=.....

3-What is the condition on "m" for the transformer to be step-down? m=.....

4-What is a diode?

.....

.....

3. Experience

3.1-Carry out the assembly in the figure 2

Figure 2

-Power the circuit with a voltage V=..... V, so that it is constant throughout

n_2	14	42	84	112	140
U ₂ (Volts)					
Flux (dφ/dt)					
(Weber/s)					
U_2/U_1					
n_2/n_1					

A-Complete the table above

The complete the table above
B -Compare the voltage ratios and that of the windings
C-Comments

- A-Take a fixed primary winding $n_2 = 300$ turns
 - -Take a fixed secondary winding $n_1 = 42$ turns
 - -Raise the secondary voltage, $U_2 = \cdots V$, give the value of "m=......»
- B-Now reverse the windings so that the primary becomes the secondary
- -Raise the secondary voltage $U_2 = \cdots V$, give the value of "m=......»
- -What do you see in both cases (A and B)?

.....

4. AC/DC Conversion

Note:

To transform the outgoing AC signal into a DC signal, a rectifier is mounted at the output of the transformer, as shown in Figure 3.

- . Take a fixed primary winding $n_1 = 300$ turns
- . take a fixed primary winding $n_2 = 42$ turns

Using an oscilloscope to view the outgoing signal before and after rectification, observe and plot the signals

is the electronic symbol for Diode

Voltage U₂, before rectification
S=.......ms/div S=......v/div

Figure 3 Transformer+rectifier with filtering

5- Conclusion		
	 	• • • • • • • • • • • • • • • • • • • •
	 	• • • • • • • • • • • • • • • • • • • •