REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE M'SILA

FACULTE DE TECHNOLOGIE DEPARTEMENT DE GENIE ELECTRIQUE

Formation : Master académique Machines électriques approfondies

SERIE N02

Exercice N01:

On désire réaliser un enroulement pour une machine à courant alternatif à une couche par pôle conséquent, pour cela on donne :

- m=3 est le nombre de phases.
- Z=24 est le nombre total d'encoches.
- 2p=4 est le nombre de pôles.
- 1) Donner le schéma de cet enroulement (bobines en séries) en respectant les différentes étapes pour un câblage en étoile.
- 2) Calculer le coefficient de bobinage k_b

Exercice NO2:

En reprenant les données du précédent exercice et on leur ajoutant le coefficient d'embrassement ($\beta={}^4/_6$), on se propose de réaliser un enroulement à deux couches à pas raccourci.

- 1) Donner le schéma de cet enroulement.
- 2) Calculer le coefficient de bobinage k_b .

Exercice N03:

Déterminer le pas d'un bobinage noté y dont le pas polaire est Q=18 pour que le $S^{\rm \acute{e}me}$ harmonique de la FEM soit éliminé.

Exercice N04:

Donner le schéma de l'enroulement pur une machine ayant Z=30, 2p=4 et tracer la forme de la FMM pour ($I_a=Im$, $I_b=0$ et $I_c=-Im$).

• Comparer cette forme avec celle de l'exercice N01.

Exercice N05:

Un petit alternateur triphasé tétrapolaire ayant dans l'armature statoriques 288 brins de conducteurs et dont les spires sont à pas diamétral réparties en 36 encoches.

- 1) Déterminer la valeur du coefficient de bobinage k_{df} pour le fondamental.
- 2) Calculer la FEM induite par conducteur *e* et par phase *E*.

On donne $B_{max} = 0.8T$, $L_m = 35cm$, $D_m = 30cm$, N = 1500tr/min.