Electrical Transformer

1. Purpose of the experiment

The aim of this experience is to highlight the transformation by raising or lowering tensions.

2. Notions et préparation

Figure 1 shows a transformer schematically. The parameters on the left side are those of the primary, while the one on the right represents the secondary. By applying a sinusoidal voltage to the primary circuit consisting of a winding of $\left(n_{1}\right)$ turns, what happens on the secondary of $\left(n_{2}\right)$ turns?

Let the primary voltage $U_{0} \sin (\omega t+\theta)$. The current passes through the primary winding around the ferromagnet, it will create a magnetic flux Φ in the iron which will in turn induce an electromotive force "e.m.f" given by the relation:

$$
E_{i n}=-n_{1} \frac{d \Phi}{d t}
$$

For an ideal transformer, the primary voltage U_{1} is equal to the induced "e.m.f".

$$
E_{i n}=-U_{1}=-U_{0} \sin (\omega t+\theta)
$$

For reasons of high efficiency, the iron is made up of a stack of varnished sheets.
Under these conditions, the flux Φ is completely channeled in the iron and will be recovered in the secondary, where it will create an e.m.f. which, in the case of a no-load transformer, will be equal to the voltage which will be delivered by the secondary winding.

$$
U_{2}=V_{0} \sin (\omega t+\beta)
$$

What's more

$$
U_{2}=n_{2} \frac{d \Phi}{d t}
$$

Figure 1

1. Since the flow is conserved. Find the following relationship

$$
\frac{U_{1}}{n_{1}}=\frac{U_{2}}{n_{2}}
$$

Electrical Transformer

As a result, we find the expression for the output voltage (that of the secondary) given by:

$$
U_{2}=\frac{n_{2}}{n_{1}} U_{1}=m U_{1}
$$

(m) this is the transformation ratio

1. What is the condition on " m " for the transformer to be step-up $\mathrm{m}=$
2. What is the condition on " m " for the transformer to be step-down $\mathrm{m}=$
3. What is a diode?

3. Handling

3.1

- Create the assembly shown in Figure 2.
- Power the circuit with a voltage $\mathrm{V}=4.5 \mathrm{~V}$, so that it remains constant throughout the experiment.
- For a fixed primary winding of $n_{1}=300$ turns, raise the secondary voltage.

n_{2} (turns)	14	42	84	112	140
U_{2} (Volts)					
$\frac{U_{2}}{U_{1}}$					
$\frac{n_{2}}{n_{1}}$					

1. Complete the table below.
2. Compare the voltage ratios and those of the windings
3. Comment

3.2

A- Take a fixed primary winding $n_{1}=300$ turns.

- Take a fixed secondary winding $n_{2}=42$ turns.

Electrical Transformer

- Raise the secondary voltage, $U_{2}=$ \qquad V; give the value of $<\mathrm{m}=$ \qquad »

B- Now reverse the windings so that the primary becomes the secondary.

- Raise the secondary voltage $U_{2}=\ldots . . . V$; give the value of $<\mathrm{m}=$ \qquad >
- What do you see in both cases (A and B) ?
\qquad

Figure 2

3.3

To transform the outgoing AC signal into a DC signal, a rectifier is mounted at the output of the transformer, as shown in Figure 3

- Take a fixed primary winding $n_{1}=300$ turns.
- Take a fixed primary winding $n_{2}=42$ turns.
- Using an oscilloscope to view the outgoing signal before and after rectification, observe and plot the signals.

Note : is the electronic symbol for the diode..

Electrical Transformer

4- Conclusion

