Chapter 4

Approximating with Polynomials and Taylor Series
4.1 The Idea:

As we said in Chapter 1, the basic idea on which all of differential Calculus is based
is this

Lines are simple, approximate complicated functions with lines.

The lines used in differential Calculus are tangent lines. They are good approxi-
mations near the point of tangency, as we see from the most common picture from
differential Calculus.

Figure 4.1: Graph of f(z) = 2% and line tangent at z = 1/3.
For example, the function f(z) = 22
point of tangency which occurs at z =

is close to the line y = 22/3 — 1/9 near the
then line and the function f(z) =z

1/3 (see Figure above). Far from z = 1/3
2 are not close at all. Similarly, g(x) = sin(x) is
approximately equal to y = z near x = 0, but only near x = 0.

Figure 4.2: Graph of g(x) = sinz and line tangent at x = 0.



Once we know the slope of the tangent line (i.e., the derivative) of a function at
a point, then computing the tangent line is straight forward. From the slope of the
tangent line, we can tell if the function is increasing or decreasing near the point of
tangency or if it is a candidate for being a local maximum of minimum.

But why only use lines? Certainly lines are simple, both algebraically and geomet-
rically, but we pay for this simplicity because the distance between the tangent line
of a function and the function generally grows quickly as we move far from the point
of tangency. Could we approximate with another type of function which is almost as
simple as a line, but for which the degree of approximation was much better than with
a line? Quadratic equations (those involving z?, squared terms) are pretty simple,
why not approximate with them instead of lines? Cubics (polynomials involving z3)
are not that much more complicated than quadratics. Why not use cubics? Or why
not use fourth degree polynomials? Certainly, the more complicated the approximat-
ing functions we use, the more accurate we can make the approximation over a larger
interval from the point of tangency.

We should begin at the beginning.

4.2 Approximating Lines:

First we consider carefully just how good an approximation the tangent line really is.
Consider a function f(x) and fix a point zy. How close is the tangent line of f(x) at

xo to f(z)?
Well, recall that the derivative f'(z) is defined to be

o) =t 1@ = I )

T—T0 €r — xo

Hence, for = close to zy we have that

f'(@o)(x — wo) = f(x) — f(xo)

or
f(x) = f(zo) + f(zo)(x — z0).
The right hand side of this equation is just the formula for the tangent line for f(z)
at x = xo. This is another way to say that f(z) is close to its tangent line at x = .
This begs the question “How close is it?”
Let the error betweenthe function and its tangent line at zo be E(z), that is

E(z) = f(z) — (f(z0) + f'(z0)(z — @0).
Then we can compute that
E(x¢) = 0 and E'(zy) = 0.
Suppose we somehow know that there is a number M such that

—M < f"(z) <M



for all z. Note that
E'(z) = f'(z) — f'(0)
and
Ell(x) — f”(x),
so we ahve
—-M<E'(z) <M

for all . We integrate all sides of this inequality
[ -Mdz< [B'@)de < [ Mo
o o o
to obtain (for z > zy),
—M(z — x) < E'(z) — E'(x9) < M(z — x9).
But E'(x) = f'(x) — f'(x0) so E'(x0) = 0 and we have
—M(x —x9) < E'(z) < M(z — x0).

Integrating again, we get
T

/:M(ac—xo)dxg/ij'(x)dacg/z M(z — xp) dz,

0 0
so, evaluating and using F(zo) = 0, we have

om0 < B(x) < (o~ 20)”

that is

|E(z)] <

M
?(x — )%

To show this inequality for x < xy, we repeat the above computation with integrals

/xo
T

We have established a bound on the size of the “error” E(z) term between the

function and its tangent line at = x,. The bound depends on knowing the number
M such that
[f" (@) <M

for all . So what we need to know is that the second derivative of f(z) satisfies
[f"(@)] <M

for all . This shows the following:



Theorem: Suppose a function f(x) is twice continuously differentiable and suppose
there is a number M such that
|f”| S M

for all z. Then

|E(z)| = |f(z) = (f(z0) + (z — m0) f'(z0))] < %Ix —zo[”.

We have accomplished two good things. First, we have shown that the tangent
line to a function f(z) at z = x¢ is given by

y = f(z0) + f'(m0) (& — m0)-

Second, we have given an explicit estimate of the difference between f(z) and its
tangent line at g,

[f(2) = (f (@0) + f'(w0) (& — o)) < %\m = @[,

where |f”(z)| < M for all z. The important thing to remember about this estimate is
that the distance between f(z) and its tangent line at z grows like a constant times
|z — z0|? as x moves away from .

In order to get the estimate we need some extra information about f(z) (a bound
on its second derivative). This is only to be expected since the distance between
a tangent line and the function varies widely depending on how fast the function
changes.

Getting a bound on the derivative f”(z) for all z can be very difficult. Looking
at the discussion above, we only used the bound

[f(s)l < M

for s between z, and z.

The tangent line to f(z) at z = x; is also called “the first order approximation to
f(z) at zo” or “the first degree Taylor polynomial for f(z) at xy”. The words “first
order” and “first degree” indicate that the highest power of (z — z¢) that appears in
the formula for the tangent line is the first power. Likewise, the distance between
the tangent line and the function is “second order” in x — xg because it is less than
a constant times |z — xq|?.

When we say that the tangent line approximates a function near the point of
tangency, we now guarentee on how good an approximation this is. For example,
take f(z) = sin(z) and xy = 7/6. We compute that

sin(z) ~ sin (%) + cos (%) (x - %) :



Because f”(z) = —sin(z) is satisfies | — sin(z)| < 1 for all z, we have that

i~ (o () o 3) (- ) <

Note that the line tangent line at = n/6 and the function sinz can be closer than
the estimate on the error. In fact, the graphs of the line and sin x actually cross again
for z < 0. The estimate is a guarentee on the largest the error could be.

7T2

€r — —

6

Figure 4.3: Tangent line to sinz at x = /6.
Similarly, for the function e, the approximation at o =1 is
efrmete-(z—1),

where we used that d?(e”)/dz? = e® evaluated at o = 1 is e. So

d2 T
\ d(;)\ =le*| <e? for0<x<2,
and so
62 2
[e® = (etelz —1))[ < S fe 1]
We get a different approximation if we take zo = 0. Using that e’ = 1, we get

that
efx~1+1-2.

Using the same estimate on the second derivative for e* on 0 < x < 2 we have that

62

e — (1+2x)| < 5.’52,



for 0 < z < 2. This approximation has the advantage that it doesn’t use the number
e, 80 no error is introduced in approximating e.

Figure 4.4: Approximations of e®

4.3 Quadratic Approximations:

Like everything else in life, using linear approximations involves a trade off. Lines are
simple and easy to compute with, but away from the point of tangency the tangent
line is not a very accurate approximation. To obtain greater accuracy, we can use
quadratic polynomials tangent to the graph of the given function. We get better
accuracy, but must pay the price in greater complication.

There are lots of ways to choose a quadratic that approximates a given function
just like there are lots of ways to choose a line that approximates the function. In
Calculus, we “work locally”, which means we choose the quadratic that best approx-
imates the given function near a particular point.

Given a function f(z) and a point zo, we wish to find the quadratic polynomial,
Py(z), of the form

Py(z) = a + b(z — 20) + c(z — 7)?

that best approximates f(z) near zo (we use the subscript 2 on P(z) to remind
us that it is a quadratic polynomial). To do this we must choose the coefficients
a,b and c.

Since P5(x9) = a, in order to have f(z) and P,(z) be tangent at x, the two
functions must have the same value at zq, so we must pick

a = f(zo).

Also, in order for f(x) and Py(z) be tangent at xo, they must have the same derivative
at x9). We compute
Py(z) = b+ 2¢c(z — o)

so Pj(zo) = b. We choose
P;(zo) = f' (o)



or
b = fl(x()).

To continue this pattern, we should choose ¢ so that
Py (z0) = f"(20).
Since
PQH(JT()) = 2C,
this implies that we should take

. fll(2x0) '

So our candidate for “tangent quadratic” to f(z) at z = zy is

fll(.,ro)
2

Py(z) = f(xo) + f'(wo) + (z — x0)”.

Note that the tangent line to f(z) at x = x4 gives the constant and linear terms of this
polynomial, as we would expect. Forming the tangent quadratic involves choosing
only a second degree term to add to the tangent line.

To determine if this is the choice that we want, let

Ey(z) = f(z) - Pa(a),

hence,
f'(@o) = P3(o)
and
(f") (wo0) = (Py) (0)-
That is, we have chosen Py(x) so that

Ey(w0) = Ey(w0) = Ey (o) = 0.

Now Py(z) is linear function, so it gives the equation for the line tangent to f'(x) at
T = xg. Suppose Ms is a constant such that

< My
for all z. We can use the estimate of the last section to show that
Ey(z) = f'(z) — P'(x)

satisfies M
Ey(@)] < =52 | —aol?.



To turn this into an estimate on Fy(x), we use that

M. M.
~ o —m)? < Byo) < 2w - w)?,

and integrate to obtain

/——x—xo dw</ Ey(z dx</ (x — x0)* dx

SO
M M
—3—3‘2(95 — 20)% < Ey(z) — Ea(xo) < 3;'2(:5 — x0)?,

or M,
|B2(2)| < 375
This is the best we could hope for. We have taken the first order approximation
of f(z), added a quadratic term to obtain a better approximation near z,. The
difference between the quadratic approximation and the original function involves a
constant that depends on the third derivative of f(z) and on the distance from z
cubed.
As an example, consider f(x) = cos(z) with o = 0. To find the tangent quadratic
equation at x = 0, we compute f'(z) = —sin(x) and f"(z) = —cos(z). Hence, near
ro = 0 we have

|:c—x0|

1 9 x?
cos(x)z1+0-(x—0)—§-(x—0) :1—5.

The third derivative of cos(x) is —sin(z), and | — sin(z)| < 1 for all z. Hence

ot~ (1)

For x near zero, this is quite accurate. If z < 0.1 then

i~ (1-%)

We can collect the discussion above into a definition and a theorem.

< Zzl?.
_6|$|

< 0.00017.

Definition: Given a function f(z), the second order or second degree or quadratic
Taylor polynomial for f(z) at x =z is

fll(xo)

5 (z — x0)°.

Py(z) = f(wo) + f'(mo)(x — mo) +

Theorem: Suppose f(z) is three times continuously differentiable. Fix two numbers
o and x and suppose there is a number Mj such that for all z between xy and = we
have

|f"(2)] < M;.



Then

M.
< 2z —zof?.

7(@) ~ Po(e)] < <on

#0) = (tan) + £ an)e = 200+ T4 (0~ o)

Note that the first degree Taylor polynomial gives the first order term of the second
degree Taylor polynomial. So to compute the second degree Taylor polynomial of
f(z) = e® at = 1 we can use the calculation at the end of the previous section that

e ~e+e(r—1).

Then, since
f”(x) — flll(:E) — e.’L‘
the second degree Taylor polynomial of f(z) = e* at zy =1 is

e‘”we+e(x—1)+g(a€—1)2.

Also,
(@) < €

for 0 < z < 2, so we have

2
€ 3
< —|lz—-1|".

e’ — (e—i—e(x—l)—i-g(x—l)Q)

Similarly, for zo = 0, we get the second order Taylor polynomial of e* is
1
e ~1+z+ 5%2

and for0 <z <2

Figure 4.5 Quadratic approximations for e” centered at x =0 and =z = 1.



4.4 The nth Degree Approximation
We step up now to the cubic or third degree or cubic Ps(x) tangent to a function
f(z) at x = zo by taking the quadratic approximation

Py(a) = flan) + F o) @ - 0) + L0 (@ —

and adding a cubic term, that is
Psy(z) = Py(z) + k(z — ).
We choose the constant £ so that
f" (o) = P5'(z0),
this will guarentee that the first three derivatives of the error term
Es(z) = f(z) — Ps(z)

are zero at £ = x,. Since
Pl (2) = 3 - 2k
we get that k = f"(x)/3! and
(2o i

51 ( —x0) + y(:ro)(x — ).

Pg(ﬂ?) = f(l‘()) -+ fl($0)($ — l‘()) +

We could continue, constructing the fourth degree (quartic) polynomial tangent

to f(z) at & = z, but the pattern is becoming clear, so we jump to the general nth

case.

Definition: The nth degree or nth order Taylor Polynomial or power series
of a function f(z) centered at x = x is

_ L df L d*f ) Ldf .
Pxo,n(f) = f(zo) + Ndz . (x — o) + N da? . (x—xo)* +...+ ol dan . (x — zo)
or, in summation notation

& 1dif j
Pron(2) —Jgoﬁ% (x — x0)

(where we use the conventions that 0! = 1 and

°f
dx?

= f(z).)

T

10



The notation P, , is not standard. That means you must say what it is before
you use it.

Theorem (Taylor’s Theorem) : Suppose f(z) is an n + 1-times continuously
differentiable function. Suppose there is a number M,,,; such that for all z between
z and zy we have

‘ dn+1 f

dxn—}—l
z

‘ S Mn—|—1-

If Py, is the nth—degree Taylor polynomial for f(x) at 2o Then

Mn+1
(n+1)!

‘33 . I0|n+1 )

‘f(.%) - Pxo,n(l‘” <

This expression is called Taylor’s inequality.

The n =1 case of this theorem is discussed in Section 4.2 and the n = 2 case in
Section 4.3. The definition and theorem above just continue the pattern established
in those sections.

Checking this theorem is not as hard as you might imagine. We can use a boot-
strapping technique called “mathematical induction”. We already have shown the
theorem for n = 1 and n = 2. Now, let n = 3. Consider a function f(x), points z,
and the constant M, such that

%nz < My,
for z between x and zy. If we let

h(z) = f'(z)
then we have that .

inl < Mpqa,

for z between z and z,. We construct the Taylor polynomial for the function h(z) of
degree n — 1 at x,

1 d"h

=1 | © 7"

Q(z) = h(zg) + ...+

zo

and we know that

h(z) ~ Q)| < T fo — "

We make a couple of simplifying assumptions. Fix z > z and assume Q(z) < h(z)
for xy < z < x. This is just one possible configuration of these functions. To get a

11



complete proof, we would have to deal with all the other possibilities as well. This
assumption allows us to remove the absolute values in the estimate above.
Now,
X
[ h(s)dz = £(z) ~ (o)
Zo

since h is the derivative of f. Also, we have

1 df

T nl dxn
o

0 (x — xo)™

/:Q(s)ds= j—:fc‘ (x — xo) + -

Using these formulas, if we integrate both sides of

M)~ Q) < T (e — )
we have
f(z) = flzo) — <5—J; . (z — m) + % ;l%: (z — xo)") < (T]L\/[_Tll),(x o).

But this is precisely what we wanted to show because

f(a:o)—i—(% (x—x0) +...— —=

Zo

is the nth degree Taylor polynomial of f at z

At the beginning of this argument we said that we knew the theorem was true
for n = 2 so let n = 3. During the argument, we never specifically used the fact that
n = 3. What we showed is that “If the theorem is true for n = N then it is also true
for n = N 4+ 1.” Since we already know it is true for n = 2 it must be true for n = 3
and since it is true for n = 3 it must be true for n = 4, and so on. For any value of n
we are given, we could repeat the argument above until we know the theorem is true
for that n. Hence, it must be true for all n.

4.5 Remarks on Taylor Polynomials

There are a number of Taylor polynomials you should have at your fingertips (that
is, memorize). Verifying that these really are the formulas make a bunch of nice
exercises. In the formulas below we use the convention that 0! = 1. While this does
not make a lot of sense from the definition of factorial (n! =1-2-3-...-n), it does
make it a lot easier to write compact summation formulas.

. .
. 2 1.3 " "ol
20 3! no 0

12



1 noo
=l4+a4+224+23+.. . +2 :Zx’.
11—z 0
[ J
333 $5 $2'fl+1 n ( 1)]3:2]'—1—1
sSi(r) = — -+ — — = -
(@) 31 5! @2n+1)! = (25 +1)!
Note that this is the (2n + 2)nd—degree Taylor polynomial of sin(z) at = 0.
The =+ in the formula means that this term is either plus or minus depending
on n because the coefficient of 22"*? is zero.
¢ 2 4 2 (—1)iz%
T x x " " (=1)7x¥
cos(z) =1— =+ ——... & =) —.
21 4l (2n)! jgo (25)!

Note that this is the (2n + I)St—degree Taylor polynomial for cos(z) at z = 0
because the z2"+! coefficient is zero.

More examples of Taylor polynomials for well-known functions are given in the
exercises. The more of these you have memorized the easier life will be.

Mathematics is made up of two kinds of facts. There are very general theorems
applying to large sets of functions and detailed calculations applying to single func-
tions. We should not overlook the detailed theorems as occasionally they come in
just as handy as the general theorems. There are a number of relationships between
the Taylor polynomials above that can be exploited to great benefit.

For example, we can obtain the Taylor polynomial for 1/(1 — z) by the method of
“synthetic division” you learned long ago. Synthetic division in this case is just long
division of (1 — z) into 1 as follows:

Synthetic division

So,
n+1

1
—— =l+4z+ 2+ 2"+
l1—2 1—2z

13



But we already knew this. The partial sums of the geometric series are given by the

formula "
1 — n
S, = 7:5’
11—z
or

1 xn—f—l

l4z+22+... +2" = .
1—=x 1—=x

We have come up with the Taylor series for 1/(1—xz) centered at x = 0 in two different
ways.

Substitution allows us to generate new power series from known power series. For
example, we know that

~l+o+224+22 4.+
1—2

Replacing x with —z in this formula, we obtain

1
or 1
~Nl—z+x? -2+ (=1
14+zx

A more complicated application of the same idea can sometimes be used to com-
pute the Taylor polynomial centered at zero for the function es™®). Say we want to
compute the 3rd degree Taylor polynomial centered at x = 0 for this function. We
first recall that

2 3
"N l4r4 et
‘ ol T3l
Replacing = with sin(z) we have

.2 .3
sin
(z) 4 Sin (m)
2! 3!

Replacing sin(z) on the right hand side of this equation with its Taylor polynomial
centered at zero, we have

@) ~ 1 +sin(z) +

G0 1 4 (o — (2/3) 4 B (;?/3!))2 G (x?j/3!))33!

Now,



where ... represents the terms of degree greater than three. Substituting again, we

have \ . .
o xt = 2% + 2 o34
€8 (z) ~14+ (LE . (x3/3!)) + ;!! 3!-3! + 3

Dropping all terms of degree greater than three, we get

3 332 .7)3

oSin(@) A A
1+=x 3'—1- —|—3'

2

esm(>~1+x+§+o z?

is the third degree Taylor polynomial centered at x = 0. We computed this polynomial
without computing any derivatives. We are able to compute the Taylor polynomial of

e*™(®) using substitution in this way because there is no constant term in the Taylor
polynomial of sin(z) centered at z = 0. Using this idea on e is more messy (see
Exercises to ponder).

or

4.6 Examples:

We should think of Taylor polynomials as a natural extension of the idea of tangent
lines. Taylor polynomials give a way of approximating complicated functions with
polynomials. Hopefully, the polynomials are easier to compute and work with than
the original function, but we must always remember that the Taylor polynomial is
only an approximation.

As an example, consider the following curious situation. You have been using the
function e” for several years already. You can manipulate it using algebra and tools
from Calculus. Yet, answering the question, “What is the value of €?” is not so easy.
We remember that e &~ 2.71828..., but where did this come from and what is the
next digit? Taylor polynomials provide a way to compute e as accurately as anyone
might like as follows: We know that the Taylor polynomial for e” centered at x = 0
is

2 "

e’”z1+x+x—+...+—.
2! n!
So, using £ = 1 we have

o141 1 1 1
e=eél Fltg gt
We can use Taylor’s theorem to determine the accuracy of this approximation of
e, if we can come up with a bound on the (n+41)5! derivative of e*. We already know
that
dn—Hem

dzm

T
I

So for 0 < z <1 we have that
dn—He;c

dz™

<e for0<z<I1.

15



Using Taylor’s inequality we now have

101 1 1 1 < e
‘- ( R TRET +”'+n!>‘ G

This is starting to look circular because e appears on both sides of the equation.
We can save ourselves by noting that this is only an inequality. We do not need the
exact value of e for the right hand side. Any number greater than e gives us a bound
on the size of the expression on the left.

We can show (without any prior knowledge of the value of e) that e < 4 (how
we know this depends on the definition of e® and its relationship to Inz, see the
Exercises). Using this we have

(1+1+1+1+ +1>‘< 4
€ AT T TR S )

So, for example, the difference between e and the expression

PR S B B
Hlt gttt

is less than
4 4 1

61 720 180
Since this is less than 1/100, the Taylor polynomial at 0 of degree five evaluated at
x = 1 gives an approximation of e that is accurate to at least two decimal places. To
get a more accurate approximation we simply take more terms. We know that 1/n!
tends to zero very quickly, so the accuracy of the approximation grows very quickly
with n.
As a second example, consider the motion of an object thrown straight up. Let
x denote the height of the object above the ground, so z will be a function of time ¢
and the usual equation we use is
d*x
dit?
where ¢ is the acceleration of gravity near the earth’s surface (approximately 9.8
meters per second?).
This works well for everyday things like baseballs, but rockets and spacecraft
can reach much higher altitudes. We know that the force of gravity decreases as

=9

the distance from the object grows. The formula above is really just the 0t order
approximation of the more accurate formula given by

d*z GM

ﬁ N (R() + 117)2

16



where M is the mass of the earth, GG is the universal gravitation constant and Ry is
the radius of the earth. (This is still just an approximation because it ignores the
effect of the atmosphere, the fact that the earth is not perfectly spherical, etc.) Let

GM
e
We compute that
oy 2GM
f(.’l:)— (R0+-/L')3’
n, ~__ 6GM
f (33)— (R0+$)47

d&f  (n+1)IGM
+ .
dz™ (Ro + x)t2

Hence, the nth—degree Taylor polynomial for f centered at z = 0 is

n

_GM  2GM _ 6GM ,

(n+1)\GM
f(z) = P,(x) = B R T+ +——

Ré r — ... (RO)"+2

The 02 order approximation of f gives

GM
T) R —
and letting ¢ = GM/R2 we get the simple formula above. The error between f and
its zero-th order approximation is “order x”, that is, it is bounded by a constant
times |z|.
The 15t order Taylor polynomial gives the formula

Replacing 2GM/R3 with 2g/ Ry we have

29z 2z
- —=—g(1l—-——].
f@)~ =g+ % g( Ro)

Once z is a significant fraction of Ry, this approximation will be much more accurate.
The second order approximation is

f@)~ —g+

2GMz 6GM (1 2x 6$2>
=—g —

R~ R R R

17



and the second degree term becomes significant when (z/Ry)? is significant. The error
term is “order z3”

The word ”significant” is a relative term. How large /R, must be before the first
or second order terms are significant depends on how much error we are willing to
put up with in predictions about our body. We can estimate the error in each ap-
proximation using Taylor’s inequality, but the decision of how many terms to include
in the Taylor expansion depends on the situation. Each extra degree term we add
to the Taylor Polynomial improves the approximation with the actual function. The
error is like a constant times the next higher power of z. But be warned-the constant
in the error estimate also changes each time we add a term.

4.7 Taylor Series and Power Series:

Given a function f(x) which can be differentiated as many times as we like, we
can approximate it near a point x = z( as closely as we like by computing the
nth degree Taylor polynomial with large n. What if we want an “infinitely good”
approximation. Since improving the degree or approximation involves increasing the
degree of the Taylor polynomial, an infinitely good approximation should require an
“infinite degree” polynomial. This motivates the following

Definition: Given a function f(z) which is infinitely differentiable (that is, deriva-
tives of all orders exist) and a point z, the Taylor series for f centered at zg
is

(o) + flwo(x — o) + / ;3!60) (x—x0)?+...= 2% % ) (x — )",

where we use the convention that d°f/dz’ = f(z).

A Taylor series is just a Taylor polynomial where we forget to stop adding terms.
It is an example of a power series, a series of the form

ag + a1 (T — z9) + az(z — 39)* + ... = Y an(z — )"

n=0

The numbers ag, a1, as, . .. are called the coefficients.

What we are doing is using infinite series to define a function of the variable z.
Given a value of z, we plug it into the summation and get an infinite series. If the
series converges, the limit of the partial sums is the value of the function. If the series
diverges then z is not in the domain of the function.

Definition: We say a function f(z) is analytic at ¢ if there is an € > 0 such that
for all x with

|z — x| <€
the Taylor series
— (x — zo)"
amo nlodz™|
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converges and
fl@)=2%

n=0

n
1 dan (x — zo)™
Zo
That is, a function is analytic at a point z, if its Taylor series converges to f(z)
for x near xy. Luckily, most of the functions we are used to dealing with in Calculus,
like €*, sine, cosine, tangent, etc. are analytic where ever they are defined.

4.8 A Curious and Useful Observation
Recall (as you should be able to do for the rest of your life), the Taylor series of e is

[} 2 3
emzz%:1+x+%+%+....
n=0

This series converges absolutely for all real numbers z. It turns out that it also
converges absolutely when we plug in other types of things for x.

You have probably encountered the number i = v/—1. Adding this “number” to
our set of real numbers is a very useful. It allows us to solve many more equations,
for example

2+9 = 0
2 = -9
= v-9
= 3v—-1=3u.
Arithmetic and Calculus with complex numbers, perhaps surprisingly, turns out to

be remarkably useful in fields from physics to electrical engineering.
If we replace x in the Taylor series for e* with iz, we obtain

o _ = (12)" (iz?)  (iz)®
T __ J— y
e —Z . =1+ + o1 + i +....
n=0
Using the facts that i2 = —1,43 =i-42 = —i,* =4?-12= —1-—1 =1 and so on, we
get that
2 3 .4 5

e :1+zx—§—z§+ﬂ+za—....
It turns out that the commutative law holds for absolutely convergent series. That is,
we can rearrange the terms of an absolutely convergent series however we like without
altering the sum. (The situation for a conditionally convergent series is much more
subtle, see Exercises.) If we collect together all the terms containing ¢ and all those

without 7 we have
2 4 6

w_q @ T @ , 3 2P
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You should now have that “tingly” feeling down your spine that happens when you
see something really weird. The two series on the right are familiar. They are just
the Taylor series for sine and cosine centered at = 0. That is, we have that

€' = cos(z) + isin(z).

This is called Euler’s formula. It is one of the great surprises of mathematics. It
tells us that the function e®, discovered as the inverse of the natural log function, is
related to the trigonometric functions sine and cosine. If we plug in z = 7 to this
formula we get a particularly striking formula

e = —1.

All of the weird numbers you have learned from elementary school to high school,
—1, 7, e and i = y/—1, are related to each other.

This formula is much more than just a curiosity. As a first example, we use the
rules of manipulating exponents to derive some standard (but hard to remember)
trigonometric identities. Since the rules of arithmetic of complex numbers are the
same as for real numbers, we know that

ol0+8) — pib+id _ 10 ,id
Using Euler’s formula on both ends of this equation we have

cos(0 +¢) + isin(f+ ¢) = (cos(@) + isin(f))(cos(¢) + isin(¢))
= cos(f)(cos(¢) + isin(¢)) + isin(f)(cos(4) + i sin(¢))

cos(f) cos(p) + i cos(H) sin(¢) + isin(6) cos(¢) + i° sin(f) sin(¢)
) — sin(0) sin(@) + 7(cos(6) sin(p) + sin(#) cos(¢)).

Two complex numbers a + b and ¢ + id are equal if and only if @ = ¢ and b = d,
hence the equation above implies the two equations

cos(#) cos(¢

cos(f + ¢) = cos(f) cos(¢) — sin(B) sin(¢)
sin(0 + @) = cos(f)sin(¢) + sin(f) cos(o).

That is, the usual angle sum formulas for sine and cosine are really consequences of
the rules for arithmetic with exponents.

Exercises:

1. Compute the Taylor polynomial of each of the following as indicated

(a)

f(x) =3+ 32% — 52° centered at x = 0 to degree 4
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f(x) = 3+ 32* — 52° centered at x = 1 to degree 4
f(z) = sin(x) centered at x = w/4 to degree 4
f(z) = cos(z) centered at x = m/4 to degree 4

f(z) = In(z) centered at z =1 to degree 4
f(z) = tan(z) centered at x = 0 to degree 4
f(z) =sec(x) centered at z = 0 to degree 4

f(z) = arcsin(z) centered at x = 0 to degree 4

(i)
f(z) = arccos(z) centered at x = 0 to degree 4
2. For each of the following, find the indicated Taylor polynomial without com-

puting any derivatives. (Use substitution into a Taylor polynomial you already
know, synthetic division, composition, .. ..)

(a)

f(x) = 1% centered at z = 0 to degree 4

(b)

1
flz) = 2 centered at x = 0 to degree 4

f(z) = In(1 — x) centered at z = 0 to degree 4
f(z) = cos®(2?) centered at x = 0 to degree 4

f(z) = sec(x) centered at z = 7/4 to degree 4

_ 1
142z — 22

f(z)

centered at z = 0 to degree 4
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1
f(x) = — centered at z = 1 to degree 4
x
(Hint: First substitute z =z — 1.)

3. How large a degree Taylor polynomial must you use in order to accurately
compute sin(.5) to 8 decimal places?

4. How large a degree Taylor polynomial must you use in order to accurately
compute €2 to 8 decimal places?

5. How large a degree Taylor polynomial must you use in order to accurately
compute e 2 to 8 decimal places? (Does this change your answer to the previous
problem?)

6. Suppose we know that 0 < g(z) < f(z) for all z.
(a) Verify that
b b
/ g(x)dx S/ f(z) dx
for all a < b.
(b) Can you say
g'(z) < f'(=)?
Why or why not?

7. Find an expression for the n®® term of the Taylor series for tan(z) centered at
z = 0 and memorize it.

8. Find an expression for the nt® term of the Taylor series for sec(z) centered at
z = 0 and memorize it.

9. Find an expression for the n'® term of the Taylor series for In(x) centered at
z = 1 and memorize it.

10. Draw the graphs of the 3rd’ 5th, 7th and oth degree Taylor polynomials for
sin(x) centered at x = 0. Looking at the polynomials and the graphs, what

would graph of the 33td degree Taylor polynomial of sin(z) centered at z = 07

11. Use Euler’s formula to derive trigonometric identities from the following formu-

las
2 .
6(19) — 6210

Exercises to Ponder
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(a) Show that

and

both diverge.

(b) What does this say about applying the commutative law to infinite series?
For example, can we rearrange the terms of

n+1

i (=1
n=1 n
arbitrarily and obtain the same sum?

. We know that the radius of convergence of the geometric series

which tends to infinity as x tends to 1. Can you use the same idea to put upper
bounds on the radius of convergence of the Taylor series centered at zero for

1/(1 + 22).

. Compare the Taylor series for 1/(1 — z) and In(1 — z) centered at z = 0. How
could you guess one if you knew the other?

. What is the Taylor series centered at x = 0 for the function

e/ ifr >0
fw“‘(o ifz <0

(Hint: If you assume the derivatives exist, then computing the derivatives of
f(z) at x = 0 is easy, just take limits from the left. Verifying that the derivatives
are correct is hard.) What is strange about this Taylor series and this function?

cos T

. Compute the Taylor polynomial of e centered at x = 0 using what you know

about e* and cos z.
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6. Recall the “definition” of e via natural logs

el
/ —dz =1n(e) = 1.
1

x

Check that ‘1
/ —dz >1
1

x
by estimating the area under the graph. Show how this implies e < 4.
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