Chapter 1

Bilinear and Quadratic forms

1.1 Bilinear forms

Definition 1.

Bilinear form of a vector space V is a function ¢ of two variables on V', with values
in the field F satisfying the bilinear axioms which are:

p(ur + uz,v) = (u1,v) + (uz,v)
o(u,v1 + ve) = p(u,v1) + @(u, vs)
olau,v) = ap(u,v) = e(u, av)

for all u,v € V and a € F
Bilinear form will be denoted by (u, v)

Remark. (0,v) = (v,0) =0

Symmetric bilienar forms
Definition 2.
A bilinear form is said to be symmetric if
(u, v) = (v, u)

and skew symmetric if

(u,v) = —(v,u)

1
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Examples.
e o(x,y) = (z,y) in R" is bilinear and symmetric for any scaler product.

o o((x1,11), (T2,y2)) = T1y1 +2x1Y2 + 3y1 22 +4y1y9 is bilinear, but not symmetric.

Proprieties of a bilinear form

Let V' be a vector space and let ¢ be a bilinear form on V. We have

plu+v,u+v) = p(u,u) + 2¢(u,v) + ¢(v,v)
olu—v,u—v)=@u,u) —20(u,v) + p(v,v)
p(u,v) = 5(p(u+v,u+v) = pu,u) = v,v))
o(u,v) = 1(p(u+v,u+v) — p(u —v,u —v))
Definition 3.

A n x n matrix A is called symmetric if A' = A

Theorem 1.

Bilinear form given in above example is symmetric if and only if matrix A is sym-
metric.

Proof. Assume that A is symmetric. Since V'AU is a 1 x 1 matrix, it is equal to its
transpose: V'AU = (VIAU)! = U'A'V = U'AV and hence (V,U) = (U,V) and it
follows that form is symmetric. Conversely, let the form is symmetric. Set U = e; and
V' = e; where e; and e; are elements of fixed basis. We find that (e;, e;) = el Ade; = a;;
while (e;,e;) = eE-Aei = a;; and as the form is symmetric we get that a;; = a;; and
the matrix A is symmetric. m

Computation of the value of bilinear form

Let u,v € V and let U and V be their coordinates in the basis B so that u = BU
and v = BV. Then
(u,0) = OO Jwiws, Y vjy;)
( J
This expands using bilinearity to ), xy;(ui, v;) = >, ; miayy; = U'AV

(u,v)y = U'AV

Thus if we identify V' with F™ using basis B then bilinear form <, > corresponds to
U'AV.
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Matrix of a bilinear form
Definition 4.

Let B = (vy,...,v,) be a basis of V and let ¢ be a bilinear form on V. The matrix of
¢ with respect to B is

Expression for a bilinear form on a basis

Lemma 1. Let B = (vq,...,v,) be a basis of V and let ¢ be a bilinear form on V.
For any u,v € V', we have
o(u,v) = UAV

Proof. Let u = (ay,...,a,) and v = ([, ..., B,). We have

o(u,v) = p(avy + ... + Qv f101 + ... + Boon)
= 25:1 2521 aiﬁj@(”ﬂj)
= im1 Zj:l a;B;([#le)iy
=UTAV

If ¢ is a symmetric bilinear form, then

plu,v) = Y aifiplene)+2 Y aifiplee)

1<i<n 1<i<j<n

Remark. [¢]c is the only matrix with this property. A bilinear form ¢ is symmetric
if and only if [p]c is a symmetric matrix.

Corollary. Let V be a vector space over a field F. Let B = (vy, ..., v,) be a basis of
V. For every nxn matrix M over F, there exists a unique bilinear form ¢ : VxV — F
such that ¢(v;,v;) = M, ; for 1 <i,j <n.

Proof. Define ¢(u,v) = UT AV and observe that ¢ is bilinear. No other bilinear form
with this property exists, since any bilinear form satisfying the assumption has matrix
M, which Lemma 1. uniquely determines the value of the bilinear form. m
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Example 1. The bilinear form ¢((z1,y1), (T2, ¥2)) = x122 + 221y2 + 3122 + 44190
has matrix [é ﬂ with respect to the standard basis

o((z1, 1), (22,32)) = [21, 1] E ﬂ [xz]

Yo

Change of basis

Lemma 2. Let B = (vy,...,v,) and B’ = (v}, ...,v),) be two bases of V' and let ¢ be
a bilinear form on V. Let P = [id|g p'. Then

[l = Pt[@]BP
Proof. We have
(P'l¢lsP)i; = e;P'[¢]p Pe;
= [vi]sP'[¢]p Plvi]
= [vilp ][]
= (v, v;) = ([p]B)i

Application.
Let {.,.) be a bilinear form on R? defined by

((z1,22), (Y1, ¥2)) = 22151 — 3T1Y2 + T2y2
1. Find the matrix A of this bilinear form in the basis {u; = (1,0) and us = (1,1)}

2. Find the matrix B of given bilinear form in the basis {v; = (2,1) and vy =

(1,-1)}

3. Find the transition matrix P from the basis {u;} to {v;} and verify that B =
P'AP

Solution.

1. Set A = (a;;) where a;; = (u;, u;)
ajp = <U1,U,1> = <(1,0), (0, 1)> =2-04+0=2
Rest of the entries in the matrix are calculated using the following formula:
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Q12 = <U1,U2>
21 = <U2,U1>
Qoo = <U2,U2>

Thus the matrix A is as follows

a=15 3]

-y

3. Now we write £ — 1 and v in terms of u; and wus

2. Similarly matrix B is

(27 1) = Uy + Uz
(1, —1) = 2u1 — U9

1 1

2 -1

|12 ¢
ThusP—{1 _11 andsoP—[ 0 6

}. Thus P'AP = P = {3 9} =B

Example 2. Let A be an n X n matrix in F' and define
(u,v) = U'AV

where U and V' are coordinates of u and v respectively in some basis of V.
Then we see that this defines a bilinear form on V. This coincides with usual inner

product of V if A = 1.

1.2 Quadratic forms
Definition 1.

A quadratic form ¢ on V = K™ is a function ¢ : K" — K given by

q(u) = q(x1, 22, ..., 2,) = Z i T T

1<i<j<n

Property.
Vee K, q(ev) = 2q(v)
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Symmetric bilinear form on K" and Quadratic form on K"

Definition 2. We can define a quadratic form ¢ using a symmetric bilinear form

q(u) = p(u,u)
Iy
o)
q(u) = q (1,29, ..., xy) = (1,22, ..., Ty) A
Tn
q(u) = U'AU

Example.

Let ¢ be a quadratic form defined on F? : ¢ (z,y, 2) = 2° + 42y + 3y* — 6yz + 12 — 222
The matrix A of ¢ is

2 3

3 =3
-3 -2

A:

NI= N =

Lemma.

Let ¢ be a quadratic form on V' = F", charF # 2, that comes from a symmetric
bilinear form V,q(u) = ¢(u,u). Then the bilinear form may be recovered from g:
1
plu,v) = la(u+v) —q(u) = q(v)]

PTOOf- %(@(u tu,u+ U) - @(uvu) - @(v,v)) = %(90<U7U) + 90<U7 U)) = <p(u, U) [

Remark.

The correspondence between quadratic forms and symmetric matrices is one-to-one,
when a basis is fixed. So quadratic forms are simply homogeneous polynomials in n
variables, where each monomial has a degree 2.

Definition 2.

Two matrices A and B are called congruent if A = P!BP for some non-singular P.
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Theorem 1.

Every real symmetric matrix A is congruent to a diagonal matrix

D= P'AP

Proposition.

Let g be a quadratic form, ¢ : V = F* — F and dimV =n
Q(u) = Q<x17 ,l’n) = Z QAij ;T
1<i<j<n

Then daq, ag, ...,ap, € F and [y, o, ..., [, are linear forms such that:

q(u) = q(z1, ..., x,) = Zai(li(xl, ey Tp))?

Proof. Using the proof by induction over the dimension of V', dimV =n

{p(l) is true

p(n—1) = p(n) is true

For n = 1,p(1) is true.

Let n > 2:

Case 1. Ji/a; # 0, for example, a;; # 0, ¢ has a pure square, the term ap;z?.
Consider all terms which contain x; and complete the square. We write all terms
containing x; as:

n
2
annxri + E a1;T1%;
j=2

= a1
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Then q(z1,...,7,) = a1 (L (z1, ..., 2))? + ¢ (21, ..., T)
¢’ is a quadratic form (Q.F) over F"~! and using the inductive hypothesis, we obtain

q(z1, oy ) = >y ar(le(@, .oy @))%

Case 2. If ¢ has no terms a;z?, but has a term of the form a;;z;2;, for example
a12x122(a1z # 0). Consider all terms which contain x; or zy:

n n
A19T1T2 + E Q5 T; T + E A2 T2X
=3 =3
= Q127129 + B.’L’l + CI‘Q

(st )
a1 | T1Xg + — + —To

12 12

B BC
= 12 T + — i) + — - 5
12 a2 ayo
——
a b

q(u) = apsab + q"(xq, ..., )

q" is a Q.F over F"~2 since ab = Z—i(a+b)2 — }L(a—b)2 and by the inductive hypothesis
we obtain

q(u) = “2 (x40 (23, ...,xn))Q—%(xl—xg—i-l’Q(xg, oy ) Y g (U, ooy )
Finally, q(u) = Y p_, ar(le(z1, ..., )% O

Remark. This procedure is called Gauss method and is used to write a quadratic
form as sum of squares.

Example.
V =R4,

q(u) = q(x1, T, T3, 14) = 2° + 923 + 4x§ + 62129 + 42123 + 162923 + 42024 + 87374

- N O

2
8
4

N L =
o © W

The matrix A of g is A = . A is symmetric because A! = A.

0 240
We consider all terms which contain xy:
22 + 61179 + dw173 = 22 + 221 (319 + 273) = (71 + 312 + 273)% — (3wy + 213)% =
(11 + 3wy + 2w3)% — 922 — 422 — 122973.
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We can write ¢: q(u) = q(x1, T2, T3, 14) = (T1 + 329 + 223)? + 4923 + 42974 + 8T374.
We consider all terms which contain x5 or x3 :

Axox3 + Awoxy + 8137y = 4(XoT3 + Towy + 27314) = 4[(12 + 224) (23 + 74) — 223] =
A3 (wo 4 x5+ 324)? — 3 (22 — w5+ 24)? — 227 = (T2 + 23+ 324)? — (T2 — 23+ 14)* — 82,
Finally,

q(u) = q(z1, x9, 23, 4) = (21 + 322 + 2x3)2 + (r9 4 23+ 3:104)2 — (x9 — 23+ x4)2 — 81‘421

10 0 O
: : : : 01 0 O
The matrix A is congruent to a diagonal matrix D = 00 -1 0
00 0 =8
ry = 1 + 3x2 + 323 xy = o) — 3o — Lo + 8
i Th = T9 + 13 + 32 To = Lot 4 1ot — 2y
and we can write D = P'AP. We put /2 2 3 * then{ "’ 2 /2 2 ? ,4
Ty =Ty — T3+ X4 T3 = 5Ty — 5T3 — Ty
Ty = 14 Ty = 1
5 1
1 -3 -1 3
0o + i -2
We obtain P = 0 7 2, 1
2 T2
0 0 0 1
The new basis is B’ = (€}, €, €%, €};), where
1 -3 -1 8
12 12 2
0 1 1 _
el = eh=1| 7 |,e5=1 2 | and €} =
0 5 -5 —1
0 0 0 1
Finally, q(u') = q(z, 24, o, o)) = o° + x,° — 24> — 8/,

Positive definite forms

Definition 1.

A bilinear form ¢ on a real vector space V' is positive definite, if
o(u,u) > 0, for all u # 0.
A real n X n matrix A is positive definite, if

UtAU > 0, for all U # 0.

Remark. A bilinear form on V' is positive definite if and only if the matrix of the
form with respect to some basis of V' is positive definite.

Examples.
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1. A positive definite form on R" is given by the dot product (.).

n

wo=>1" ry = uu=y . x>0, forall u= (21, 29,..,2,) #0.

)

2. Consider the symmetric bilinear form on R"™ which is defined by
o(u,v) = x1y; — 2x1Yy2 — 2x2Yy1 + Dxoys. The quadratic form is
q(u) = p(u,u) = 22 — 4 z9 + 523 = (11 — 279)? + 3.
Using Gauss method, we can write: q(u) = (11 — 2x5)* + 3.
Then the from ¢ is positive definite because g(u) > 0, for all u # 0.

Tests for positive definiteness
Theorem. The following conditions are equivalent for a symmetric matrix A:

1. p(u,u) =U'AU > 0 for all u # 0.
2. The eigenvalues of A are all positive YA, \i > 0.
3. One has det Ay > 0 for all k x k upper left submatrices Ay (Sylvester’s criterion).

Remark. We say that A is negative definite, if A has negative eigenvalues.

2 1 4
Example 1. A= |1 3 1
1 2 3
Ay =[2] = detA; =2>0
Ay = |7 4| = detds=5>0

A3 =A— d@tAg = detA >0
Then A is positive definite.

a 1 1
Example 2. Let a be a real parameter and consider the matrix A= |1 1 «a
1 a 5
By Sylvester’s criterion, A is positive definite if and only if
a 1
a>0, det [1 1 >0, detA>0

The first two conditions give a > 0 and a > 1, while
detA = —a*+7a—6=—(a—1)(a—2)(a+3)

It easily follows that A is positive definite if and only if 1 < a < 2.
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Orthogonality
Suppose that ¢ is a symmetric bilinear form on a real vector space V:
1. Orthogonal vectors: Two vector u, v are called orthogonal, if ¢(u,v) = 0.

2. Orthogonal basis: A basis B = (vq, vy, ...,v,) of V is called orthogonal, if
¢(v;,v5) = 0 for all @ # j and it is called orthonormal, if it is orthogonal with
o(vg,v;) =1 for all 4.

3. If F'is a subspace of V', the orthogonal of F'is
F+ ={ueV/o(u,v) =0,Yv € F}, which is also a subspace of V.

4. Isotropic vectors: A vector u(u # 0) is called isotropic, if g(u) = ¢(u,u) = 0.

5. Kernel, non-degenerate forms: ¢ is called a non-degenerate form, if
Et ={ueV/p(u,v) =0,Yv € V} = {0}. Otherwise,  is called degenerate.
The kernel of ¢ or q, kerp = kerq = E*.

6. The isotropic cone of a quadratic form ¢ is the set of all isotrops of V' under gq.
Clq) ={u € V/q(u) =0}

7. A subspace F of V is called isotropic, if F'N F+ # (0).

Proprieties.

kerq C C(q)

- dimV = dimker(q) +rg(q)

- dimV = dimF + dimF+ — dim(F N kerq), F is a subspace of V.
In particular, if ¢ is non-degenerate, dimV = dimF + dimF*.

- FH = F 4+ kerq

-V =F®F!' < F is not isotropic (FﬂFL:O).

Gram-Schmidt procedure

Suppose that (vq,vs, ..., v,) is a basis of a dot product space V', then we can find an

orthogonal basis (v], v}, ..., v},) as follows:

s
We put
[

’
!/ _ V2.1
Uy = V2 _vi'vll (%]
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’ /
r . n—1 vp.v; 4
Up = Un Zizl vl Ui

/ / /
then v}, s, ..., v, are orthogonal.

Example.

We find an orthogonal basis of R3, starting with the basis

1 1 1
U1 = 0 , Vg = 1 , Vg = 2
1 1 3
We define the first vector by vj = v; and the second by
1 1 0
I vy 2 _
UQ—'UQ_,Ui.Ui'Ul— =510l =11
1 1 0
Then v}, v}, are orthogonal and we may define the third vector by
1 1 0 -1
. v3.0} v3.0} o 4 2 —
Ué_v?’_zéTivll_vZTZUé_ 2| =3 |0 =f |1 =10
3 1 0 1
Theorem.

The eigenvalues of a real symmetric matrix A are all real. i.e A\; € R
The eigenvectors of a real symmetric matrix A corresponding to distinct eigenvalues
are necessarily orthogonal to one another. i.e \; # \; = v;.v; =0

Orthogonal matrices
Definition.

A real n x n matrix P is called orthogonal, if P!P = I,, i.e P~! = P!,

Proprieties.

- To say that an n x n matrix is orthogonal is to say that the columns of P form
an orthonormal basis of R".

- The product of two n x n orthogonal matrices is orthogonal.

Example. P — |:COS f —sin 01

sinf cosf
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Spectral theorem

Every real symmetric matrix A is diagonalisable. In fact, there exists an orthogonal
matrix P such that P~'AP = P'AP is diagonal.

A 0
D = = P 'AP = P'AP
0 A

Remarks.

- When the eigenvalues of A are distinct, the eigenvectors of A are orthogonal
and we may simply divide each of them by its norm to obtain an orthonormal

basis of R™.

- When the eigenvalues of A are not distinct, the eigenvectors of A may not
be orthogonal. In that case, one may use the Gram-Schmidt procedure to
replace eigenvectors that have the same eigenvalue with orthogonal eigenvectors
that have the same eigenvalue.

- The converse of the spectral theorem is also true. That is, if P is an orthogonal
matrix and P'AP is diagonal, then A is symmetric.

Diagonalisation of quadratic forms
Theorem.

Let q(u) = U'AU for some symmetric nxn matrix A. Then there exists an orthogonal
change of variables U = PU’ such that:

where A1, Ao, ..., A, are the eigenvalues of the matrix A.

Signature of a quadratic form

Definition. The signature of a quadratic form ¢(u) = U'AU is defined as the pair
of integers (ny,n_), where ny is the number of positive eigenvalues of A and n_ is
the number of negative eigenvalues of A.
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Examples.
1. We diagonalise the quadratic form in R?, B = (e, e3) the standard basis

q(u) = q(r1,22) = 516% + 4z + 295%

We have A = Mp(q) = E ;}

The eigenvalues A = 1,6 are distinct and one can easily check that

12

P=(eey)=|Ys Y|, then D= Mgp(q) = L0V piap— prap
AR 06

As usual, the columns of P were obtained by finding the eigenvectors of A and

by dividing each eigenvector by its norm.

Changing variables by U = PU’, we now get U’ = P'U and also

2 2
Q(U/) = Q(‘Tll, xl2> - ZE/IZ + 6,:[,'/2 = <:B17—\/§:132) + 6(21i/<gx2>

We can use the Gauss method to find the sum of squares of g.

We take (1) : 5z} + dayzo = 5(2f + 22122)

= 5la] + 221(320)] = 5[(w1 + F22)° — (322)%] = 5[(z1 + 2a2)® — guy] =
5(1’1 + %JI2)2 - %ZL’%

replace this in g(u)

q(u) = 5(xy + gxz)Q — %x% + 272, we obtain

q(u) = 5(x1 + F29)* + 223

/ 5 / 5,/
] = X1+ 522 T =2 — 5%
We put 2 = 272

xh = X9 Ty = @,
We obtain the orthogonal matrix P and the new basis B’ = (¢!, €)):

_5
P = (ele}) = {(1) 121 and the formula D = Mp/(q) = {8 (_) = P'AP.

[S14[=>]
| S

Finally,

g(u') = q(x}, xh) = 524 + Sa}”

The signature of ¢ is (2,0), ¢ is a non-degenerate form and the rank of ¢ is 2.
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2. We consider the quadratic form defined in R? by the real symmetric matrix

2 11
A=11 2 1
1 1 2

2 1 1] |x 20 +y+=z

q(u) =U'AU = (z,y,2) |1 2 1| |y| =(x,y,2) |z +2y+ =

11 2| |2 Tty + 22

=z +y+z2)tylr+2y+2)+z(x+y+ 22)
=222 + oy + 22 + yx + 292 + 2y2 + zx + 2y + 222

q(u) = 222 + 2y* + 22% + 22y + 222 + 2y2

Diagonalisation of A:

A pu— 1 pummy
We have P(A) = —(A — 1)2(A—4), P(\)=0={ 1~ "M

)\2 = 4, meo = 1
E(A) = span{vi, va}, E(A2) = span{us}

—1 -1 1
where vy = [ 0 | ,uo=| 1 | ,u3= |1
1 0 1

In this case, use the Gram-Schmidt procedure to replace vy, vs by two orthogonal
eigenvectors v}, vy, dividing each of v}, v}, v3 by its norm, we then obtain he
columns of the orthogonal matrix: we put

—1
vp=v1=1|0
1
—1 -1 -1
U§:U2_Z?Z}UI1 1{—-1l0]|=1|1
N
1
vy =v3 = |1
1

We obtain the orthogonal matrix and the new basis (orthonormal basis)
B' = (€}, ¢}, ¢e5) and

1 -1 1
/ASN SN ) 75 Zg ?g

P = (616263) = ? L/_§ ?g
V2 V6 V3
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1 00
We obtain the formula D = Mp/(q) = [0 1 0| = P"'AP = P'AP
0 0 4
vy = J5(—21 + 3)
we have U = PU’, then U' = P'U = ( af, = 7(—m1 + 229 — x3)
rh = \/Lg(xl + x5 + x3)

Finally,

() = (2}, 2, o) = a7 + oy + 42y

The signature of ¢ is (3,0) and the rank equals 3. ¢ is a non-degenerate form.
Gauss Method:
q(u) = 222 + 2y% + 222 + 22y + 222 + 2y2

We take (I): 2% + 2zy + 222 = 2 [w2+2a: (Q;Z)}

qu) =2z +iy+ 122+ 32+ 322+ y2

We take (IT): —y* +yz =

Then,




1.2. QUADRATIC FORMS

2 0 1
D=Mgp(g)= {0 L 0| =PtAP
00 3
veailyrl (emrob
Weput ¢ ¢/ = —1—%,2 = y:y’—%z’
7=z z=12z

The new basis is B'(e], €}, €4): €]

Finally,

q(u/) — q($l’y/’ ZI) — 2$/2 +

17
R (e
_ 1
= qy=y —37
z =2z
1 1
L
0 1 -3
0 0 1
1
2T
1 ,63: _§
0 1
3,2 4 12

7Y +§Z
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Chapter 2

Hermitian and hermitian quadratic
forms

Let V be a C—vector space.

Definition 1.

A hermitian form is a function ¢ of V in C, satisfying

p(ur + uz,v) = (u1,v) + (uz,v)
p(u,v1 + v2) = (u, v1) + p(u, v2)
o(au,v) = ap(u,v)
o(u, av) = ap(u,v)
QO(U, u) = QO(U, u)

Remark.

Since @(u,u) = p(u,u), then p(u,u) € R.
Definition 2.
An hermitian quadratic form is a function ¢ : V' — R given by
q(u) = ¢(u,u)
Propriety.
q(au) = |af*q(u), for all a€C

19
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Proposition.

Let ¢ be an hermitian form and ¢ is the associated hermitian quadratic form of ¢,

then
q(u+v) = q(u) —q() _ glu+tv) —q(u—1v)

q(u+iv) —q(u) —qv) _ q(u+iv) —q(u—iv)
" (1 +0) — glu—v) + iglu-+ iv) — iglu — iv)
q(u+v) —qlu—v)+iglu+ww) —iqg(u — v
p(u,v) = 1
Examples.

1. The form z — |2|? is an hermitian quadratic form on V' = C, associated with
the hermitian form
(z,w) — zw

2. The form (21, ..., z,) + |21]? + ... + |2,]? is an hermitian quadratic form, associ-
ated with the hermitian form

((21y eey 2n), (W1, ooy Wy)) = 2907 + ..o + 2,0,

Definition 3.

Let A € M,(C). A is called an hermitian matrix if A* = A.
If A= (aij)lgijgn, then Q5 = CL_IJ for all ’L,j

Proposition.

Let A € M,(C), then ¢ {éC X)(C ;fv is an hermitian form over C".
u,v)

Proposition-Definition.

Let ¢ be an hermitian form and ¢ is the associated hermitian quadratic form of
¢. The matrix A = (a;j)1<ij<n 18 a matrix of ¢ (or of ¢) over the standard basis
B = (ey, e, ...,€,), where

aij = o(ei, e;)

1. The matrix A is hermitian.
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2. Let u=3"" ze; and v = Y7 yje;, then

o(u,v) = Z aijxy; = U'AV

1<ij<n
3. If B = (€},¢€,...,e,) is another basis of V, then
A/ = MB/(QO) = PtAF

Remark.

We have .
i=1

1<i<j<n

The rank of ¢ is the rank of its matrix over all basis of V.
The form ¢ (or ¢) is called non-degenerate if ¢ is of the rank n.

Theorem.

There exists an orthogonal basis of V' for the hermitian quadratic form ¢ and

k
Q(U) = q(xl,fljg, ...,.fl}'n) = Z&i’li<l‘1,x2, ...,l'n)‘z
i=1
where oy, ...,a, € R and [y, ..., [, are the linear forms over V.

Example.

Let ¢ be an hermitian quadratic form over C? defined by

q(21, 22, 23) V> 2121 + 32075 — 2373 + 12122 — 12921 — 2123 — 2321 + 202923 — 20232

1 . —1
The matrix of ¢is A = Mp(q) = |- 3 2i
-1 =2 1

q(z1, 22, 23) = (|21]° + 2Re(iz122) + 2Re(—2173)) + 3|22* — |23]* + 2Re(2i2073)
= (Jz1 — 122 — 23]* — | 22> — |23]° — 2Re(i2273)) + 3|2a|” — |23]* + 4Re(iz073)

2
5’2’3’2
2

iZg
2

:|Zl—’i22—23|2+2 Z9 —
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q(z1, 22, 23) = 2|w1|2 — 2|w2|2 + 2Re((1 4 2i)wyz3) — 2Re(w3z3)

2
r
wy + 5—2 z3

1. : L.
= §|zz1 + 29 + (1 — 2i)23)* — §|221 — 2 + 23)* — 2|23

|Z3\2
+ 2

=2 ’LUQ—FE

5 2
22— 2
51l 2




