Chapter 1

Bilinear and Quadratic forms

1.1 Bilinear forms

Definition 1.

Bilinear form of a vector space V is a function φ of two variables on V, with values in the field F satisfying the bilinear axioms which are:

$$
\begin{gathered}
\varphi\left(u_{1}+u_{2}, v\right)=\varphi\left(u_{1}, v\right)+\varphi\left(u_{2}, v\right) \\
\varphi\left(u, v_{1}+v_{2}\right)=\varphi\left(u, v_{1}\right)+\varphi\left(u, v_{2}\right) \\
\varphi(\alpha u, v)=\alpha \varphi(u, v)=\varphi(u, \alpha v)
\end{gathered}
$$

for all $u, v \in V$ and $\alpha \in F$
Bilinear form will be denoted by $\langle u, v\rangle$

Remark. $\langle 0, v\rangle=\langle v, 0\rangle=0$

Symmetric bilienar forms

Definition 2.

A bilinear form is said to be symmetric if

$$
\langle u, v\rangle=\langle v, u\rangle
$$

and skew symmetric if

$$
\langle u, v\rangle=-\langle v, u\rangle
$$

Examples.

- $\varphi(x, y)=\langle x, y\rangle$ in \mathbb{R}^{n} is bilinear and symmetric for any scaler product.
- $\varphi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} y_{1}+2 x_{1} y_{2}+3 y_{1} x_{2}+4 y_{1} y_{2}$ is bilinear, but not symmetric.

Proprieties of a bilinear form

Let V be a vector space and let φ be a bilinear form on V. We have

$$
\begin{gathered}
\varphi(u+v, u+v)=\varphi(u, u)+2 \varphi(u, v)+\varphi(v, v) \\
\varphi(u-v, u-v)=\varphi(u, u)-2 \varphi(u, v)+\varphi(v, v) \\
\varphi(u, v)=\frac{1}{2}(\varphi(u+v, u+v)-\varphi(u, u)-\varphi(v, v)) \\
\varphi(u, v)=\frac{1}{4}(\varphi(u+v, u+v)-\varphi(u-v, u-v))
\end{gathered}
$$

Definition 3.

A $n \times n$ matrix A is called symmetric if $A^{t}=A$

Theorem 1.

Bilinear form given in above example is symmetric if and only if matrix A is symmetric.

Proof. Assume that A is symmetric. Since $V^{t} A U$ is a 1×1 matrix, it is equal to its transpose: $V^{t} A U=\left(V^{t} A U\right)^{t}=U^{t} A^{t} V=U^{t} A V$ and hence $\langle V, U\rangle=\langle U, V\rangle$ and it follows that form is symmetric. Conversely, let the form is symmetric. Set $U=e_{i}$ and $V=e_{j}$ where e_{i} and e_{j} are elements of fixed basis. We find that $\left\langle e_{i}, e_{j}\right\rangle=e_{i}^{t} A e_{j}=a_{i j}$ while $\left\langle e_{j}, e_{i}\right\rangle=e_{j}^{t} A e_{i}=a_{j i}$ and as the form is symmetric we get that $a_{i j}=a_{j i}$ and the matrix A is symmetric.

Computation of the value of bilinear form

Let $u, v \in V$ and let U and V be their coordinates in the basis B so that $u=B U$ and $v=B V$. Then

$$
\langle u, v\rangle=\left\langle\sum_{i} u_{i} x_{i}, \sum_{j} v_{j} y_{j}\right\rangle
$$

This expands using bilinearity to $\sum_{i, j} x_{i} y_{j}\left\langle u_{i}, v_{j}\right\rangle=\sum_{i . j} x_{i} a_{i j} y_{j}=U^{t} A V$

$$
\langle u, v\rangle=U^{t} A V
$$

Thus if we identify V with F^{n} using basis B then bilinear form $<,>$ corresponds to $U^{t} A V$.

Matrix of a bilinear form

Definition 4.

Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V and let φ be a bilinear form on V. The matrix of φ with respect to B is

$$
[\varphi]_{B}=\left[\begin{array}{llll}
\varphi\left(v_{1}, v_{2}\right) & \varphi\left(v_{1}, v_{2}\right) & \cdots & \varphi\left(v_{1}, v_{n}\right) \\
\varphi\left(v_{2}, v_{1}\right) & \varphi\left(v_{2}, v_{2}\right) & \cdots & \varphi\left(v_{2}, v_{n}\right) \\
\varphi\left(v_{n}, v_{1}\right) & \varphi\left(v_{n}, v_{2}\right) & \cdots & \varphi\left(v_{n}, v_{n}\right)
\end{array}\right]
$$

Expression for a bilinear form on a basis

Lemma 1. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V and let φ be a bilinear form on V. For any $u, v \in V$, we have

$$
\varphi(u, v)=U^{t} A V
$$

Proof. Let $u=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $v=\left(\beta_{1}, \ldots, \beta_{n}\right)$. We have

$$
\begin{aligned}
& \varphi(u, v)= \varphi\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}, \beta_{1} v_{1}+\ldots+\beta_{n} v_{n}\right) \\
&=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \beta_{j} \varphi\left(v_{i} v_{j}\right) \\
&=\sum_{i=1}^{n} \sum_{j=1}^{n=1} \alpha_{i} \beta_{j}\left([\varphi]_{C}\right)_{i, j} \\
&=U^{T} A V
\end{aligned}
$$

If φ is a symmetric bilinear form, then

$$
\varphi(u, v)=\sum_{1 \leq i \leq n} \alpha_{i} \beta_{i} \varphi\left(e_{i}, e_{i}\right)+2 \sum_{1 \leq i<j \leq n} \alpha_{i} \beta_{i} \varphi\left(e_{i}, e_{j}\right)
$$

Remark. $[\varphi]_{C}$ is the only matrix with this property. A bilinear form φ is symmetric if and only if $[\varphi]_{C}$ is a symmetric matrix.

Corollary. Let V be a vector space over a field F. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. For every $n \times n$ matrix M over F, there exists a unique bilinear form $\varphi: V \times V \rightarrow F$ such that $\varphi\left(v_{i}, v_{j}\right)=M_{i, j}$ for $1 \leq i, j \leq n$.

Proof. Define $\varphi(u, v)=U^{T} A V$ and observe that φ is bilinear. No other bilinear form with this property exists, since any bilinear form satisfying the assumption has matrix M, which Lemma 1 . uniquely determines the value of the bilinear form.

Example 1. The bilinear form $\varphi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=x_{1} x_{2}+2 x_{1} y_{2}+3 y_{1} x_{2}+4 y_{1} y_{2}$ has matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ with respect to the standard basis

$$
\varphi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left[x_{1}, y_{1}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]
$$

Change of basis

Lemma 2. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ and $B^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ be two bases of V and let φ be a bilinear form on V. Let $P=[i d]_{B, B^{\prime}}$. Then

$$
[\varphi]_{B^{\prime}}=P^{t}[\varphi]_{B} P
$$

Proof. We have

$$
\begin{aligned}
\left(P^{t}[\varphi]_{B} P\right)_{i, j} & =e_{i}^{t} P^{t}[\varphi]_{B^{\prime}} P e_{j} \\
= & {\left[v_{i}\right]_{B} P^{t}[\varphi]_{B^{\prime}} P\left[v_{i}\right]_{B}^{t} } \\
& =\left[v_{i}\right]_{B^{\prime}}[\varphi]_{B^{\prime}}\left[v_{j}\right]_{B^{\prime}}^{t} \\
= & \left.\varphi\left(v_{i}, v_{j}\right)=\left([\varphi]_{B^{\prime}}\right)\right)_{i, j}
\end{aligned}
$$

Application.

Let $\langle.,$.$\rangle be a bilinear form on \mathbb{R}^{2}$ defined by

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=2 x_{1} y_{1}-3 x_{1} y_{2}+x_{2} y_{2}
$$

1. Find the matrix A of this bilinear form in the basis $\left\{u_{1}=(1,0)\right.$ and $\left.u_{2}=(1,1)\right\}$
2. Find the matrix B of given bilinear form in the basis $\left\{v_{1}=(2,1)\right.$ and $v_{2}=$ $(1,-1)\}$
3. Find the transition matrix P from the basis $\left\{u_{i}\right\}$ to $\left\{v_{i}\right\}$ and verify that $B=$ $P^{t} A P$

Solution.

1. Set $A=\left(a_{i j}\right)$ where $a_{i j}=\left\langle u_{i}, u_{j}\right\rangle$
$a_{11}=\left\langle u_{1}, u_{1}\right\rangle=\langle(1,0),(0,1)\rangle=2-0+0=2$
Rest of the entries in the matrix are calculated using the following formula:

$$
\begin{aligned}
& a_{12}=\left\langle u_{1}, u_{2}\right\rangle \\
& a_{21}=\left\langle u_{2}, u_{1}\right\rangle \\
& a_{22}=\left\langle u_{2}, u_{2}\right\rangle
\end{aligned}
$$

Thus the matrix A is as follows

$$
A=\left[\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right]
$$

2. Similarly matrix B is

$$
B=\left[\begin{array}{ll}
3 & 9 \\
0 & 6
\end{array}\right]
$$

3. Now we write $E-1$ and v_{2} in terms of u_{1} and u_{2}

$$
\begin{gathered}
(2,1)=u_{1}+u_{2} \\
(1,-1)=2 u_{1}-u_{2}
\end{gathered}
$$

Thus $P=\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$ and so $P^{t}=\left[\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right]$. Thus $P^{t} A P=P=\left[\begin{array}{ll}3 & 9 \\ 0 & 6\end{array}\right]=B$
Example 2. Let A be an $n \times n$ matrix in F and define

$$
\langle u, v\rangle=U^{t} A V
$$

where U and V are coordinates of u and v respectively in some basis of V.
Then we see that this defines a bilinear form on V. This coincides with usual inner product of V if $A=I$.

1.2 Quadratic forms

Definition 1.

A quadratic form q on $V=K^{n}$ is a function $q: K^{n} \longrightarrow K$ given by

$$
q(u)=q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}
$$

Property.

$$
\forall c \in K, \quad q(c v)=c^{2} q(v)
$$

Symmetric bilinear form on K^{n} and Quadratic form on K^{n}

Definition 2. We can define a quadratic form q using a symmetric bilinear form

$$
\begin{array}{r}
q(u)=\varphi(u, u) \\
q(u)=q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right) A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
q(u)=U^{t} A U
\end{array}
$$

Example.

Let q be a quadratic form defined on $F^{3}: q(x, y, z)=x^{2}+4 x y+3 y^{2}-6 y z+x z-2 z^{2}$. The matrix A of q is

$$
A=\left[\begin{array}{ccc}
1 & 2 & \frac{1}{2} \\
2 & 3 & -3 \\
\frac{1}{2} & -3 & -2
\end{array}\right]
$$

Lemma.

Let q be a quadratic form on $V=F^{n}$, $\operatorname{char} F \neq 2$, that comes from a symmetric bilinear form $V, q(u)=\varphi(u, u)$. Then the bilinear form may be recovered from q :

$$
\varphi(u, v)=\frac{1}{2}[q(u+v)-q(u)-q(v)]
$$

Proof. $\frac{1}{2}(\varphi(u+v, u+v)-\varphi(u, u)-\varphi(v, v))=\frac{1}{2}(\varphi(u, v)+\varphi(v, u))=\varphi(u, v)$

Remark.

The correspondence between quadratic forms and symmetric matrices is one-to-one, when a basis is fixed. So quadratic forms are simply homogeneous polynomials in n variables, where each monomial has a degree 2 .

Definition 2.

Two matrices A and B are called congruent if $A=P^{t} B P$ for some non-singular P.

Theorem 1.

Every real symmetric matrix A is congruent to a diagonal matrix

$$
D=P^{t} A P
$$

Proposition.

Let q be a quadratic form, $q: V=F^{n} \longrightarrow F \quad$ and $\quad \operatorname{dim} V=n$

$$
q(u)=q\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}
$$

Then $\exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F$ and $l_{1}, l_{2}, \ldots, l_{n}$ are linear forms such that:

$$
q(u)=q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \alpha_{i}\left(l_{i}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}
$$

Proof. Using the proof by induction over the dimension of $V, \operatorname{dim} V=n$

$$
\begin{cases}p(1) & \text { is true } \\ p(n-1) \Rightarrow p(n) & \text { is true }\end{cases}
$$

For $n=1, p(1)$ is true.
Let $n \geq 2$:
Case 1. $\exists i / a_{i i} \neq 0$, for example, $a_{11} \neq 0, q$ has a pure square, the term $a_{11} x_{1}^{2}$. Consider all terms which contain x_{1} and complete the square. We write all terms containing x_{1} as:

$$
\begin{gathered}
a_{11} x_{1}^{2}+\sum_{j=2}^{n} a_{1 j} x_{1} x_{j} \\
=a_{11}\left[x_{1}^{2}+2 x_{1} \sum_{j=2}^{n} \frac{a_{1 j} x_{j}}{2 a_{11}}\right] \\
=a_{11}[(\underbrace{x_{1}+\sum_{j=2}^{n} \frac{a_{1 j}}{2 a_{11}}}_{l_{1}})^{2}-\left(\sum_{j=2}^{n} \frac{a_{1 j} x_{j}}{2 a_{11}}\right)^{2}] \\
=a_{11}\left(l_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}-a_{11}\left(\sum_{j=2}^{n} \frac{a_{1 j} x_{j}}{2 a_{11}}\right)^{2}
\end{gathered}
$$

Then $q\left(x_{1}, \ldots, x_{n}\right)=a_{11}\left(l_{1}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}+q^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ q^{\prime} is a quadratic form (Q.F) over F^{n-1} and using the inductive hypothesis, we obtain $q\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{n} \alpha_{k}\left(l_{k}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$.

Case 2. If q has no terms $a_{i i} x_{i}^{2}$, but has a term of the form $a_{i j} x_{i} x_{j}$, for example $a_{12} x_{1} x_{2}\left(a_{12} \neq 0\right)$. Consider all terms which contain x_{1} or x_{2} :

$$
\begin{gathered}
a_{12} x_{1} x_{2}+\sum_{j=3}^{n} a_{i j} x_{i} x_{j}+\sum_{j=3}^{n} a_{2 j} x_{2} x_{j} \\
=a_{12} x_{1} x_{2}+B x_{1}+C x_{2} \\
a_{12}\left(x_{1} x_{2}+\frac{B}{a_{12}}+\frac{C}{a_{12}} x_{2}\right) \\
=a_{12}(\underbrace{x_{1}+\frac{C}{a_{12}}}_{a})(\underbrace{x_{2}+\frac{B}{a_{12}}}_{b})-\frac{B C}{a_{12}^{2}}
\end{gathered}
$$

$q(u)=a_{12} a b+q^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)$
$q^{\prime \prime}$ is a Q.F over F^{n-2}, since $a b=\frac{1}{4}(a+b)^{2}-\frac{1}{4}(a-b)^{2}$ and by the inductive hypothesis we obtain
$q(u)=\frac{a_{12}}{4}\left(x_{1}+x_{2}+l_{1}^{\prime}\left(x_{3}, \ldots, x_{n}\right)\right)^{2}-\frac{a_{12}}{4}\left(x_{1}-x_{2}+l_{2}^{\prime}\left(x_{3}, \ldots, x_{n}\right)\right)^{2}+\sum_{k=3}^{n} \alpha_{k}\left(l_{k}\left(x_{3}, \ldots, x_{n}\right)\right)$
Finally, $q(u)=\sum_{k=1}^{n} \alpha_{k}\left(l_{k}\left(x_{1}, \ldots, x_{n}\right)\right)^{2}$.

Remark. This procedure is called Gauss method and is used to write a quadratic form as sum of squares.

Example.

$V=\mathbb{R}^{4}$,

$$
q(u)=q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+9 x_{2}^{2}+4 x_{3}^{2}+6 x_{1} x_{2}+4 x_{1} x_{3}+16 x_{2} x_{3}+4 x_{2} x_{4}+8 x_{3} x_{4}
$$

The matrix A of q is $A=\left[\begin{array}{llll}1 & 3 & 2 & 0 \\ 3 & 9 & 8 & 2 \\ 2 & 8 & 4 & 4 \\ 0 & 2 & 4 & 0\end{array}\right] . A$ is symmetric because $A^{t}=A$.
We consider all terms which contain x_{1} :
$x_{1}^{2}+6 x_{1} x_{2}+4 x_{1} x_{3}=x_{1}^{2}+2 x_{1}\left(3 x_{2}+2 x_{3}\right)=\left(x_{1}+3 x_{2}+2 x_{3}\right)^{2}-\left(3 x_{2}+2 x_{3}\right)^{2}=$ $\left(x_{1}+3 x_{2}+2 x_{3}\right)^{2}-9 x_{2}^{2}-4 x_{3}^{2}-12 x_{2} x_{3}$.

We can write $q: q(u)=q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+3 x_{2}+2 x_{3}\right)^{2}+4 x_{2} x_{3}+4 x_{2} x_{4}+8 x_{3} x_{4}$.
We consider all terms which contain x_{2} or x_{3} :
$4 x_{2} x_{3}+4 x_{2} x_{4}+8 x_{3} x_{4}=4\left(x_{2} x_{3}+x_{2} x_{4}+2 x_{3} x_{4}\right)=4\left[\left(x_{2}+2 x_{4}\right)\left(x_{3}+x_{4}\right)-2 x_{4}^{2}\right]=$ $4\left[\frac{1}{4}\left(x_{2}+x_{3}+3 x_{4}\right)^{2}-\frac{1}{4}\left(x_{2}-x_{3}+x_{4}\right)^{2}-2 x_{4}^{2}\right]=\left(x_{2}+x_{3}+3 x_{4}\right)^{2}-\left(x_{2}-x_{3}+x_{4}\right)^{2}-8 x_{4}^{2}$. Finally,
$q(u)=q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+3 x_{2}+2 x_{3}\right)^{2}+\left(x_{2}+x_{3}+3 x_{4}\right)^{2}-\left(x_{2}-x_{3}+x_{4}\right)^{2}-8 x_{4}^{2}$
The matrix A is congruent to a diagonal matrix $D=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -8\end{array}\right]$
and we can write $D=P^{t} A P$. We put $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}+3 x_{2}+3 x_{3} \\ x_{2}^{\prime}=x_{2}+x_{3}+3 x_{4} \\ x_{3}^{\prime}=x_{2}-x_{3}+x_{4} \\ x_{4}^{\prime}=x_{4}\end{array}\right.$, then $\left\{\begin{array}{l}x_{1}=x_{1}^{\prime}-\frac{5}{2} x_{2}^{\prime}-\frac{1}{2} x_{3}^{\prime}+8 x_{4}^{\prime} \\ x_{2}=\frac{1}{2} x_{2}^{\prime}+\frac{1}{2} x_{3}^{\prime}-2 x_{4}^{\prime} \\ x_{3}=\frac{1}{2} x_{2}^{\prime}-\frac{1}{2} x_{3}^{\prime}-x_{4}^{\prime} \\ x_{4}=x_{4}^{\prime}\end{array}\right.$
We obtain $P=\left[\begin{array}{cccc}1 & -\frac{5}{2} & -\frac{1}{2} & 8 \\ 0 & \frac{1}{2} & \frac{1}{2} & -2 \\ 0 & \frac{1}{2} & -\frac{1}{2} & -1 \\ 0 & 0 & 0 & 1\end{array}\right]$.
The new basis is $B^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}\right)$, where
$e_{1}^{\prime}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), e_{2}^{\prime}=\left(\begin{array}{c}-\frac{5}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 0\end{array}\right), e_{3}^{\prime}=\left(\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ 0\end{array}\right)$ and $e_{4}^{\prime}=\left(\begin{array}{c}8 \\ -2 \\ -1 \\ 1\end{array}\right)$
Finally, $q\left(u^{\prime}\right)=q\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)={x_{1}^{\prime 2}}^{2}+{x_{2}^{\prime 2}}^{2}-{x_{3}^{\prime}}^{2}-8 x_{4}^{\prime 2}$

Positive definite forms

Definition 1.

A bilinear form φ on a real vector space V is positive definite, if $\varphi(u, u)>0$, for all $u \neq 0$.
A real $n \times n$ matrix A is positive definite, if $U^{t} A U>0$, for all $U \neq 0$.

Remark. A bilinear form on V is positive definite if and only if the matrix of the form with respect to some basis of V is positive definite.

Examples.

1. A positive definite form on \mathbb{R}^{n} is given by the dot product (.).
$u . v=\sum_{i=1}^{n} x_{i} y_{i} \Longrightarrow u . u=\sum_{i=1}^{n} x_{i}^{2}>0$, for all $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq 0$.
2. Consider the symmetric bilinear form on \mathbb{R}^{n} which is defined by $\varphi(u, v)=x_{1} y_{1}-2 x_{1} y_{2}-2 x_{2} y_{1}+5 x_{2} y_{2}$. The quadratic form is $q(u)=\varphi(u, u)=x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}=\left(x_{1}-2 x_{2}\right)^{2}+x_{2}^{2}$.
Using Gauss method, we can write: $q(u)=\left(x_{1}-2 x_{2}\right)^{2}+x_{2}^{2}$.
Then the from φ is positive definite because $q(u)>0$, for all $u \neq 0$.

Tests for positive definiteness

Theorem. The following conditions are equivalent for a symmetric matrix A :

1. $\varphi(u, u)=U^{t} A U>0$ for all $u \neq 0$.
2. The eigenvalues of A are all positive $\quad \forall \lambda_{i}, \lambda_{i}>0$.
3. One has $\operatorname{det} A_{k}>0$ for all $k \times k$ upper left submatrices A_{k} (Sylvester's criterion).

Remark. We say that A is negative definite, if A has negative eigenvalues.
Example 1. $A=\left[\begin{array}{lll}2 & 1 & 4 \\ 1 & 3 & 1 \\ 1 & 2 & 3\end{array}\right]$
$A_{1}=[2] \rightarrow \operatorname{det} A_{1}=2>0$
$A_{2}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right] \rightarrow \operatorname{det} A_{2}=5>0$
$A_{3}=A \rightarrow \operatorname{det} A_{3}=\operatorname{det} A>0$
Then A is positive definite.
Example 2. Let a be a real parameter and consider the matrix $A=\left[\begin{array}{ccc}a & 1 & 1 \\ 1 & 1 & a \\ 1 & a & 5\end{array}\right]$ By Sylvester's criterion, A is positive definite if and only if

$$
a>0, \quad \operatorname{det}\left[\begin{array}{ll}
a & 1 \\
1 & 1
\end{array}\right]>0, \quad \operatorname{det} A>0
$$

The first two conditions give $a>0$ and $a>1$, while

$$
\operatorname{det} A=-a^{3}+7 a-6=-(a-1)(a-2)(a+3)
$$

It easily follows that A is positive definite if and only if $1<a<2$.

Orthogonality

Suppose that φ is a symmetric bilinear form on a real vector space V :

1. Orthogonal vectors: Two vector u, v are called orthogonal, if $\varphi(u, v)=0$.
2. Orthogonal basis: A basis $B=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of V is called orthogonal, if $\varphi\left(v_{i}, v_{j}\right)=0$ for all $i \neq j$ and it is called orthonormal, if it is orthogonal with $\varphi\left(v_{i}, v_{i}\right)=1$ for all i.
3. If F is a subspace of V, the orthogonal of F is
$F^{\perp}=\{u \in V / \varphi(u, v)=0, \forall v \in F\}$, which is also a subspace of V.
4. Isotropic vectors: A vector $u(u \neq 0)$ is called isotropic, if $q(u)=\varphi(u, u)=0$.
5. Kernel, non-degenerate forms: φ is called a non-degenerate form, if $E^{\perp}=\{u \in V / \varphi(u, v)=0, \forall v \in V\}=\{0\}$. Otherwise, φ is called degenerate. The kernel of φ or $q, \operatorname{ker} \varphi=\operatorname{ker} q=E^{\perp}$.
6. The isotropic cone of a quadratic form q is the set of all isotrops of V under q. $C(q)=\{u \in V / q(u)=0\}$
7. A subspace F of V is called isotropic, if $F \cap F^{\perp} \neq(0)$.

Proprieties.

- $\operatorname{kerq} \subset C(q)$
$-\operatorname{dim} V=\operatorname{dimker}(q)+\operatorname{rg}(q)$
- $\operatorname{dim} V=\operatorname{dim} F+\operatorname{dim} F^{\perp}-\operatorname{dim}(F \cap \operatorname{kerq}), F$ is a subspace of V.

In particular, if q is non-degenerate, $\operatorname{dim} V=\operatorname{dim} F+\operatorname{dim} F^{\perp}$.

- $F^{\perp \perp}=F+$ ker q
- $V=F \oplus F^{\perp} \Longleftrightarrow F$ is not isotropic $\left(F \cap F^{\perp}=0\right)$.

Gram-Schmidt procedure

Suppose that $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis of a dot product space V, then we can find an orthogonal basis $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ as follows:
We put
$v_{1}^{\prime}=v_{1}$
$v_{2}^{\prime}=v_{2}-\frac{v_{2} \cdot v_{1}^{\prime}}{v_{1}^{\prime} \cdot v_{1}^{\prime}} v_{1}^{\prime}$
$\dot{v}_{n}^{\prime}=v_{n}-\sum_{i=1}^{n-1} \frac{v_{n}, v_{i}^{\prime}}{v_{i}^{\prime} \cdot v_{i}^{\prime}} v_{i}^{\prime}$
then $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ are orthogonal.

Example.

We find an orthogonal basis of \mathbb{R}^{3}, starting with the basis
$v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
We define the first vector by $v_{1}^{\prime}=v_{1}$ and the second by
$v_{2}^{\prime}=v_{2}-\frac{v_{2} \cdot v_{1}^{\prime}}{v_{1}^{\prime} \cdot v_{1}^{\prime}} v_{1}^{\prime}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
Then $v_{1}^{\prime}, v_{2}^{\prime}$ are orthogonal and we may define the third vector by
$v_{3}^{\prime}=v_{3}-\frac{v_{3}, v_{1}^{\prime}}{v_{1}^{\prime}, v_{1}^{\prime}} v_{1}^{\prime}-\frac{v_{3}, v_{2}^{\prime}}{v_{2}^{\prime} \cdot v_{2}^{2}} v_{2}^{\prime}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\frac{4}{2}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]-\frac{2}{1}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$

Theorem.

The eigenvalues of a real symmetric matrix A are all real. i.e $\lambda_{i} \in \mathbb{R}$ The eigenvectors of a real symmetric matrix A corresponding to distinct eigenvalues are necessarily orthogonal to one another. i.e $\lambda_{i} \neq \lambda_{j} \Rightarrow v_{i} \cdot v_{j}=0$

Orthogonal matrices

Definition.

A real $n \times n$ matrix P is called orthogonal, if $P^{t} P=I_{n}$ i.e $P^{-1}=P^{t}$.

Proprieties.

- To say that an $n \times n$ matrix is orthogonal is to say that the columns of P form an orthonormal basis of \mathbb{R}^{n}.
- The product of two $n \times n$ orthogonal matrices is orthogonal.

Example. $P=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Spectral theorem

Every real symmetric matrix A is diagonalisable. In fact, there exists an orthogonal matrix P such that $P^{-1} A P=P^{t} A P$ is diagonal.

$$
D=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]=P^{-1} A P=P^{t} A P
$$

Remarks.

- When the eigenvalues of A are distinct, the eigenvectors of A are orthogonal and we may simply divide each of them by its norm to obtain an orthonormal basis of \mathbb{R}^{n}.
- When the eigenvalues of A are not distinct, the eigenvectors of A may not be orthogonal. In that case, one may use the Gram-Schmidt procedure to replace eigenvectors that have the same eigenvalue with orthogonal eigenvectors that have the same eigenvalue.
- The converse of the spectral theorem is also true. That is, if P is an orthogonal matrix and $P^{t} A P$ is diagonal, then A is symmetric.

Diagonalisation of quadratic forms

Theorem.

Let $q(u)=U^{t} A U$ for some symmetric $n \times n$ matrix A. Then there exists an orthogonal change of variables $U=P U^{\prime}$ such that:

$$
q\left(u^{\prime}\right)=q\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)=\sum_{i=1}^{n} \lambda_{i} x_{i}^{\prime 2}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of the matrix A.

Signature of a quadratic form

Definition. The signature of a quadratic form $q(u)=U^{\prime} A U$ is defined as the pair of integers (n_{+}, n_{-}), where n_{+}is the number of positive eigenvalues of A and n_{-}is the number of negative eigenvalues of A.

Examples.

1. We diagonalise the quadratic form in $\mathbb{R}^{2}, B=\left(e_{1}, e_{2}\right)$ the standard basis

$$
q(u)=q\left(x_{1}, x_{2}\right)=5 x_{1}^{2}+4 x_{1} x_{2}+2 x_{2}^{2}
$$

We have $A=M_{B}(q)=\left[\begin{array}{ll}5 & 2 \\ 2 & 2\end{array}\right]$.
The eigenvalues $\lambda=1,6$ are distinct and one can easily check that
$P=\left(e_{1}^{\prime} e_{2}^{\prime}\right)=\left[\begin{array}{cc}\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}\end{array}\right]$, then $D=M_{B^{\prime}}(q)=\left[\begin{array}{cc}1 & 0 \\ 0 & 6\end{array}\right]=P^{-1} A P=P^{t} A P$
As usual, the columns of P were obtained by finding the eigenvectors of A and by dividing each eigenvector by its norm.
Changing variables by $U=P U^{\prime}$, we now get $U^{\prime}=P^{t} U$ and also

$$
q\left(u^{\prime}\right)=q\left(x_{1}^{\prime}, x_{2}^{\prime}\right)={x_{1}^{\prime}}^{2}+6{x_{2}^{\prime}}^{2}=\left(\frac{x_{1}-2 x_{2}}{\sqrt{5}}\right)^{2}+6\left(\frac{2 x_{1}+x_{2}}{\sqrt{5}}\right)^{2} .
$$

We can use the Gauss method to find the sum of squares of q.
We take $(I): 5 x_{1}^{2}+4 x_{1} x_{2}=5\left(x_{1}^{2}+\frac{4}{5} x_{1} x_{2}\right)$
$=5\left[x_{1}^{2}+2 x_{1}\left(\frac{2}{5} x_{2}\right)\right]=5\left[\left(x_{1}+\frac{2}{5} x_{2}\right)^{2}-\left(\frac{2}{5} x_{2}\right)^{2}\right]=5\left[\left(x_{1}+\frac{2}{5} x_{2}\right)^{2}-\frac{4}{25} x_{2}^{4}\right]=$ $5\left(x_{1}+\frac{2}{5} x_{2}\right)^{2}-\frac{4}{5} x_{2}^{2}$
replace this in $q(u)$
$q(u)=5\left(x_{1}+\frac{5}{2} x_{2}\right)^{2}-\frac{4}{5} x_{2}^{2}+2 x_{2}^{2}$, we obtain

$$
q(u)=5\left(x_{1}+\frac{2}{5} x_{2}\right)^{2}+\frac{6}{5} x_{2}^{2}
$$

We put $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}+\frac{5}{2} x_{2} \\ x_{2}^{\prime}=x_{2}\end{array} \Rightarrow\left\{\begin{array}{l}x_{1}=x_{1}^{\prime}-\frac{5}{2} x_{2}^{\prime} \\ x_{2}=x_{2}^{\prime}\end{array}\right.\right.$
We obtain the orthogonal matrix P and the new basis $B^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$:
$P=\left(e_{1}^{\prime} e_{2}^{\prime}\right)=\left[\begin{array}{cc}1 & -\frac{5}{2} \\ 0 & 1\end{array}\right]$ and the formula $D=M_{B^{\prime}}(q)=\left[\begin{array}{ll}5 & 0 \\ 0 & \frac{6}{5}\end{array}\right]=P^{t} A P$.
Finally,

$$
q\left(u^{\prime}\right)=q\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=5 x_{1}^{\prime 2}+\frac{6}{5} x_{2}^{\prime 2}
$$

The signature of q is $(2,0), q$ is a non-degenerate form and the rank of q is 2 .
2. We consider the quadratic form defined in \mathbb{R}^{3} by the real symmetric matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$

$$
\begin{aligned}
q(u)=U^{t} A U & =(x, y, z)\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=(x, y, z)\left[\begin{array}{l}
2 x+y+z \\
x+2 y+z \\
x+y+2 z
\end{array}\right] \\
& =x(2 x+y+z)+y(x+2 y+z)+z(x+y+2 z) \\
& =2 x^{2}+x y+x z+y x+2 y^{2}+2 y z+z x+z y+2 z^{2}
\end{aligned}
$$

$$
q(u)=2 x^{2}+2 y^{2}+2 z^{2}+2 x y+2 x z+2 y z
$$

Diagonalisation of A :

We have $P(\lambda)=-(\lambda-1)^{2}(\lambda-4), \quad P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=1, m_{1}=2 \\ \lambda_{2}=4, m_{2}=1\end{array}\right.$
$E\left(\lambda_{1}\right)=\operatorname{span}\left\{v_{1}, v_{2}\right\}, E\left(\lambda_{2}\right)=\operatorname{span}\left\{v_{3}\right\}$
where $v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
In this case, use the Gram-Schmidt procedure to replace v_{1}, v_{2} by two orthogonal eigenvectors $v_{1}^{\prime}, v_{2}^{\prime}$, dividing each of $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}$ by its norm, we then obtain he columns of the orthogonal matrix: we put
$v_{1}^{\prime}=v_{1}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
$v_{2}^{\prime}=v_{2}-\frac{v_{2} \cdot v_{1}^{\prime}}{v_{1}^{\prime} \cdot v_{1}^{\prime}} v_{1}^{\prime}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ 1 \\ -\frac{1}{2}\end{array}\right]$
$v_{3}^{\prime}=v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
We obtain the orthogonal matrix and the new basis (orthonormal basis) $B^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$ and
$P=\left(e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime}\right)=\left[\begin{array}{ccc}\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$

We obtain the formula $D=M_{B^{\prime}}(q)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]=P^{-1} A P=P^{t} A P$
we have $U=P U^{\prime}$, then $U^{\prime}=P^{t} U \Rightarrow\left\{\begin{array}{l}x_{1}^{\prime}=\frac{1}{\sqrt{2}}\left(-x_{1}+x_{3}\right) \\ x_{2}^{\prime}=\frac{1}{\sqrt{6}}\left(-x_{1}+2 x_{2}-x_{3}\right) \\ x_{3}^{\prime}=\frac{1}{\sqrt{3}}\left(x_{1}+x_{2}+x_{3}\right)\end{array}\right.$
Finally,

$$
q\left(u^{\prime}\right)=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)={x_{1}^{\prime}}^{2}+{x_{2}^{\prime}}^{2}+4{x_{3}^{\prime}}^{2}
$$

The signature of q is $(3,0)$ and the rank equals $3 . q$ is a non-degenerate form.

Gauss Method:

$q(u)=2 x^{2}+2 y^{2}+2 z^{2}+2 x y+2 x z+2 y z$
We take $(I): 2 x^{2}+2 x y+2 x z=2\left[x^{2}+2 x\left(\frac{y+z}{2}\right)\right]$

$$
\begin{aligned}
& =2\left[\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}-\left(\frac{y+z}{2}\right)^{2}\right] \\
& =2\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}-\frac{1}{2}\left(y^{2}+z^{2}+2 y z\right) \\
& =2\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}-\frac{1}{2} y^{2}-\frac{1}{2} z^{2}-y z
\end{aligned}
$$

$q(u)=2\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}+\frac{3}{2} y^{2}+\frac{3}{2} z^{2}+y z$
We take $(I I): \frac{3}{2} y^{2}+y z=\frac{3}{2}\left(y^{2}+\frac{2}{3} y z\right)=\frac{3}{2}\left[y^{2}+2 y\left(\frac{z}{3}\right)\right]$
$=\frac{3}{2}\left[\left(y+\frac{z}{3}\right)^{2}-\left(\frac{z}{3}\right)^{2}\right]$
$=\frac{3}{2}\left(y+\frac{1}{3} z\right)^{2}-\frac{1}{6} z^{2}$

Then,

$$
q(u)=q(x, y, z)=2\left(x+\frac{1}{2} y+\frac{1}{2} z\right)^{2}+\frac{3}{2}\left(y+\frac{1}{3} z\right)^{2}+\frac{4}{3} z^{2}
$$

$D=M_{B^{\prime}}(q)=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{4}{3}\end{array}\right]=P^{t} A P$
We put $\left\{\begin{array}{l}x^{\prime}=x+\frac{1}{2} y+\frac{1}{2} z \\ y^{\prime}=y+\frac{1}{3} z \\ z^{\prime}=z\end{array} \Rightarrow\left\{\begin{array}{l}x=x^{\prime}-\frac{1}{2}\left(y^{\prime}-\frac{1}{3} z^{\prime}\right)-\frac{1}{2} z^{\prime} \\ y=y^{\prime}-\frac{1}{3} z^{\prime} \\ z=z^{\prime}\end{array} \Rightarrow\left\{\begin{array}{l}x=x^{\prime}-\frac{1}{2} y^{\prime}-\frac{1}{3} z^{\prime} \\ y=y^{\prime}-\frac{1}{3} z^{\prime} \\ z=z^{\prime}\end{array}\right.\right.\right.$
We obtain the orthogonal matrix $P=\left(e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime}\right)=\left[\begin{array}{ccc}1 & -\frac{1}{2} & -\frac{1}{3} \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 1\end{array}\right]$
The new basis is $B^{\prime}\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right): e_{1}^{\prime}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], e_{2}^{\prime}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right], e_{3}^{\prime}=\left[\begin{array}{c}-\frac{1}{3} \\ -\frac{2}{3} \\ 1\end{array}\right]$
Finally,

$$
q\left(u^{\prime}\right)=q\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=2 x^{\prime 2}+\frac{3}{2} y^{\prime 2}+\frac{4}{3} z^{\prime 2}
$$

Chapter 2

Hermitian and hermitian quadratic forms

Let V be a \mathbb{C}-vector space.

Definition 1.

A hermitian form is a function φ of V in \mathbb{C}, satisfying

$$
\begin{aligned}
\varphi\left(u_{1}+u_{2}, v\right) & =\varphi\left(u_{1}, v\right)+\varphi\left(u_{2}, v\right) \\
\varphi\left(u, v_{1}+v_{2}\right) & =\varphi\left(u, v_{1}\right)+\varphi\left(u, v_{2}\right) \\
\varphi(\alpha u, v) & =\alpha \varphi(u, v) \\
\varphi(u, \alpha v) & =\bar{\alpha} \varphi(u, v) \\
\varphi(u, u) & =\overline{\varphi(u, u)}
\end{aligned}
$$

Remark.

Since $\varphi(u, u)=\overline{\varphi(u, u)}$, then $\varphi(u, u) \in \mathbb{R}$.

Definition 2.

An hermitian quadratic form is a function $q: V \rightarrow \mathbb{R}$ given by

$$
q(u)=\varphi(u, u)
$$

Propriety.

$$
q(\alpha u)=|\alpha|^{2} q(u), \text { for all } \alpha \in \mathbb{C}
$$

Proposition.

Let φ be an hermitian form and q is the associated hermitian quadratic form of φ, then

$$
\begin{gathered}
\operatorname{Re}(\varphi(u, v))=\frac{q(u+v)-q(u)-q(v)}{2}=\frac{q(u+v)-q(u-v)}{4} \\
\operatorname{Im}(\varphi(u, v))=\frac{q(u+i v)-q(u)-q(v)}{2}=\frac{q(u+i v)-q(u-i v)}{4}
\end{gathered}
$$

and,

$$
\varphi(u, v)=\frac{q(u+v)-q(u-v)+i q(u+i v)-i q(u-i v)}{4}
$$

Examples.

1. The form $z \mapsto|z|^{2}$ is an hermitian quadratic form on $V=\mathbb{C}$, associated with the hermitian form

$$
(z, w) \mapsto z \bar{w}
$$

2. The form $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}$ is an hermitian quadratic form, associated with the hermitian form

$$
\left(\left(z_{1}, \ldots, z_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right) \mapsto z_{1} \bar{w}_{1}+\ldots+z_{n} \bar{w}_{n}
$$

Definition 3.

Let $A \in M_{n}(\mathbb{C}) . A$ is called an hermitian matrix if $A^{t}=\bar{A}$.
If $A=\left(a_{i j}\right)_{1 \leq i j \leq n}$, then $a_{i j}=\overline{a_{i j}}$ for all i, j.

Proposition.

Let $A \in M_{n}(\mathbb{C})$, then $\varphi:\left\{\begin{array}{l}\mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C} \\ (u, v) \mapsto U^{t} A \bar{V}\end{array} \quad\right.$ is an hermitian form over \mathbb{C}^{n}.

Proposition-Definition.

Let φ be an hermitian form and q is the associated hermitian quadratic form of φ. The matrix $A=\left(a_{i j}\right)_{1 \leq i j \leq n}$ is a matrix of φ (or of q) over the standard basis $B=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, where

$$
a_{i j}=\varphi\left(e_{i}, e_{j}\right)
$$

1. The matrix A is hermitian.
2. Let $u=\sum_{i=1}^{n} x_{i} e_{i}$ and $v=\sum_{j=1}^{n} y_{j} e_{j}$, then

$$
\varphi(u, v)=\sum_{1 \leq i j \leq n} a_{i j} x_{i} \overline{y_{j}}=U^{t} A \bar{V}
$$

3. If $B^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right)$ is another basis of V, then

$$
A^{\prime}=M_{B^{\prime}}(\varphi)=P^{t} A \bar{P}
$$

Remark.

We have

$$
q(u)=\sum_{i=1}^{n} a_{i i}\left|x_{i}\right|^{2}+\sum_{1 \leq i<j \leq n} 2 \operatorname{Re}\left(a_{i j} x_{i} \overline{x_{j}}\right)
$$

The rank of φ is the rank of its matrix over all basis of V.
The form $\varphi($ or $q)$ is called non-degenerate if φ is of the rank n.

Theorem.

There exists an orthogonal basis of V for the hermitian quadratic form q and

$$
q(u)=q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{k} \alpha_{i}\left|l_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|^{2}
$$

where $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ and l_{1}, \ldots, l_{k} are the linear forms over V.

Example.

Let q be an hermitian quadratic form over \mathbb{C}^{3} defined by

$$
q\left(z_{1}, z_{2}, z_{3}\right) \mapsto z_{1} \overline{z_{1}}+3 z_{2} \overline{z_{2}}-z_{3} \overline{z_{3}}+i z_{1} \overline{z_{2}}-i z_{2} \overline{z_{1}}-z_{1} \overline{z_{3}}-z_{3} \overline{z_{1}}+2 i z_{2} \overline{z_{3}}-2 i z_{3} \overline{z_{2}}
$$

The matrix of q is $A=M_{B}(q)=\left[\begin{array}{ccc}1 & i & -1 \\ -i & 3 & 2 i \\ -1 & -2 i & 1\end{array}\right]$

$$
\begin{aligned}
q\left(z_{1}, z_{2}, z_{3}\right) & =\left(\left|z_{1}\right|^{2}+2 \operatorname{Re}\left(i z_{1} \overline{z_{2}}\right)+2 \operatorname{Re}\left(-z_{1} \overline{z_{3}}\right)\right)+3\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}+2 \operatorname{Re}\left(2 i z_{2} \overline{z_{3}}\right) \\
& =\left(\left|z_{1}-i z_{2}-z_{3}\right|^{2}-\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}-2 \operatorname{Re}\left(i z_{2} \overline{z_{3}}\right)\right)+3\left|z_{2}\right|^{2}-\left|z_{3}\right|^{2}+4 \operatorname{Re}\left(i z_{2} \overline{z_{3}}\right) \\
& =\left|z_{1}-i z_{2}-z_{3}\right|^{2}+2\left|z_{2}-\frac{i z_{3}}{2}\right|^{2}-\frac{5\left|z_{3}\right|^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
q\left(z_{1}, z_{2}, z_{3}\right) & =2\left|w_{1}\right|^{2}-2\left|w_{2}\right|^{2}+2 \operatorname{Re}\left((1+2 i) w_{1} \overline{z_{3}}\right)-2 \operatorname{Re}\left(w_{3} \overline{z_{3}}\right) \\
& =2\left|w_{1}+\left(\frac{1}{2}-i\right) z_{3}\right|^{2}-\frac{5}{2}\left|z_{3}\right|^{2}-2\left|w_{2}+\frac{z_{3}}{2}\right|^{2}+\frac{\left|z_{3}\right|^{2}}{2} \\
& =\frac{1}{2}\left|i z_{1}+z_{2}+(1-2 i) z_{3}\right|^{2}-\frac{1}{2}\left|i z_{1}-z_{2}+z_{3}\right|^{2}-2\left|z_{3}\right|^{2}
\end{aligned}
$$

