University of M 'sila

Faculty of: Technology

Third Series Of Exercises - Phys 02

Exercise 01: Fig.01

Three-point charges are placed at the vertices of an equilateral triangle of side 'a'. $Q_1 = q$ at

point **A** (0,0,0), $Q_2 = q$ at point **B** (0, a,0) and $Q_3 = 2q$ at point **C** (0, $\frac{1}{2}a,\frac{\sqrt{3}}{2}a$)

 $1/{\it Find}$ the field created at the centroid ${\rm 'G'}{\rm of}$ this triangle

If we place a negative charged particle with masse ${}^{\prime}m^{\prime}$

- $-Q_0$ at that centroid,
- 2/ Draw the field line of this system
- **3/** What is the ratio $\frac{Q_0}{m}$ of the particle to be in equilibrium.
- 4/ What is the energy required to form this system x configuration?

Exercise 02: Fig.02

A uniform distributed charge over a surface of cylinder, of radius **R** and Hight **H**, with a charge density $\sigma(\mathbf{R} = \mathbf{H})$.

1/Find the electric field $\vec{E}(P)$ at a point **P** on its axis and located at a distance 2H from its upper end.

2/Find the electric potential V(P) at that point

3/ Additional question

Find the electric field and potential at point P in plan of symmetry perpendicular to the axis of cylinder at distance \mathbf{x} from the axis

<u>Exercise 03</u>: Fig.03

A very long cylinder of radius **R** has a charge distributed in volume with a charge density positive ρ . Using GAUSS law

1/*Find the electric field* \vec{E} *at every point in space.*

fig.02

fig.03 - a

Common Base

A spherical conductor of radius R1 and charge Q, is surrounded by a conducting

By creating in this cylinder, a cylindrical cavity that has the same axis at distance **d**

3/ Find the field inside this cavity. What do you notice about this field?

<u>Exercise: 04</u>

fig.03 - b

fig.04

- shell with inner radius R2 and outer radius R3.
- 1/Find the charge on each surface?
- 2/ Find the electric field at all points in space?
- 3/ Determine the potential at all points in space.
- If the outer surface is connected to ground,
- 4/ Determine the potential difference between the two conductors? What is the capacitance of the formed capacitor? (Additional)

<u> Exercise: 05 (Homework)</u>

Two identical charges $Q_1 = q$ located at point A(0, d, 0) and $Q_2 = q$ located at B(0, d, 0).

- 1/Find the electric field created, at point P(0,0,z), by these two charges
- **2/** Verify the limit case for z >> d. What do you observe?
- 3/ What will be the expression of the field if the charges are opposites $Q_1 = q$ and $Q_2 = -q$?
- 4/ Verify the limit case for z >> d. What do you observe?

What does this configuration represent?

