University of M 'sila

Third Series Of Exercises - Phys 02

Exercise 01: Fig. 01

Three-point charges are placed at the vertices of an equilateral triangle of side ' $\boldsymbol{a}^{\prime} \cdot \boldsymbol{Q}_{\mathbf{1}}=\boldsymbol{q}$ at point $\boldsymbol{A}(\mathbf{O}, \mathbf{0}, \mathbf{0}), \boldsymbol{Q}_{2}=\boldsymbol{q}$ at point $\boldsymbol{B}(\mathbf{O}, \boldsymbol{a}, \mathbf{O})$ and $\boldsymbol{Q}_{\mathbf{3}}=\mathbf{2 q}$ at point $\mathbf{C}\left(\mathbf{O}, \frac{1}{2} \boldsymbol{a}, \frac{\sqrt{3}}{2} \boldsymbol{a}\right)$

1/Find the field created at the centroid ' \mathbf{G} ' of this triangle If we place a negative charged particle with masse' \boldsymbol{m}^{\prime} $-\boldsymbol{Q}_{0}$ at that centroid,

2/ Draw the field line of this system
3/What is the ratio ${ }^{\prime} \frac{\mathbf{0}_{0}}{\mathbf{m}}$ ' of the particle to be in equilibrium.
4/ What is the energy required to form this system
 configuration?

Exercise 02: Fig. 02

A uniform distributed charge over a surface of cylinder, of radius \boldsymbol{R} and Hight \boldsymbol{H}, with a charge density $\sigma(\boldsymbol{R}=\boldsymbol{H})$.

1/Find the electric field $\overrightarrow{\boldsymbol{E}}(\boldsymbol{P})$ at a point \boldsymbol{P} on its axis and located at a distance $2 H$ from its upper end.

2/ Find the electric potential $\mathbf{V}(\mathbf{P})$ at that point

3/ Additional question

Find the electric field and potential at point P in plan of symmetry

fig. 02 perpendicular to the axis of cylinder at distance \boldsymbol{x} from the axis

Exercise 03: Fig. 03

A very long cylinder of radius \boldsymbol{R} has a charge distributed in volume with a charge density positive $\boldsymbol{\rho}$. Using GAUSS law

1/Find the electric field $\overrightarrow{\boldsymbol{E}}$ at every point in space.

2/ Deduce the electric potential \boldsymbol{V} created at every point in space (Taking $\boldsymbol{V}(\mathbf{0})=\mathbf{0})$. By creating in this cylinder, a cylindrical cavity that has the same axis at distance d

3/ Find the field inside this cavity. What do you notice about this field?

Exercise: 04

A spherical conductor of radius R1and charge Q, is surrounded by a conducting shell with inner radius $R 2$ and outer radius $R 3$.

fig. $03-b$

1/ Find the charge on each surface?
2/ Find the electric field at all points in space?
3/ Determine the potential at all points in space.
If the outer surface is connected to ground,
4/ Determine the potential difference between the two conductors? What is the capacitance of the formed capacitor? (Additional)

Exercise: 05 (Homework)

Two identical charges $\boldsymbol{Q}_{\mathbf{1}}=\boldsymbol{q}$ located at point $\boldsymbol{A}(\mathbf{0}, \boldsymbol{d}, \mathbf{0})$ and $\boldsymbol{Q}_{\mathbf{2}}=\boldsymbol{q}$ located at $\boldsymbol{B}(\mathbf{0}, \boldsymbol{d}, \mathbf{0})$.
1/ Find the electric field created, at point $\mathbf{P}(\mathbf{0}, \mathbf{0}, \mathbf{z})$, by these two charges
2/ Verify the limit case for $\mathbf{z} \gg \boldsymbol{d}$. What do you observe?
3/ What will be the expression of the field if the charges are opposites $\boldsymbol{Q}_{\mathbf{1}}=\boldsymbol{q}$ and $\boldsymbol{Q}_{\mathbf{2}}=-\boldsymbol{q}$?
4/ Verify the limit case for $\mathbf{z} \gg \boldsymbol{d}$. What do you observe?
What does this configuration represent?

