السنة الأولى ل م د ـ السداسي 02

Physics 02: Electricity and magnetism

Series ${ }^{\circ}{ }^{\circ}$ 02: ELECTROSTATICS
 Part 2: Continuous distribution and theorem of Gauss

EXERCISE 01

1- A ring of radius R with a uniform charge density λ and a total charge Q is lying in the xy - plane, as shown in the opposite figure. Compute the electric field at a point P , located at a distance z from the center of the ring along its axis of symmetry.

2- A charge Q is uniformily distributed on the surface of a disk of
 radius R . What is the electric field at point M on the z -axis a distance z from the center of the disk? Deduce the electric field in the case of infinite plane.

3- A uniformly charged ring, with a charge of $2.50 \mu \mathrm{C}$ and radius 0.20 m , and a very large, uniformly charged sheet, with charge density $1 \mu \mathrm{C} / \mathrm{m}^{2}$, are placed 0.50 m apart such that the axis of the ring is perpendicular to the sheet, as shown above. What is the electric field at the point \cdot midway between the ring and the sheet?

EXERCISE 02

A semicircle of radius R is positively charged, as shown in the figure.
The total charge on the semicircle is Q. However, the charge per unit
 length along the semicircle is non-uniform and given by $\lambda=\lambda_{0} \cos \theta$. 1 - What is the relationship between λ_{0}, R and Q ?
2- If a particle with a charge q is placed at the origin, what is the total force on the particle?

EXERCISE 03 (home work)

Find the electric field a distance above the midpoint of a straight line
 segment of length $2 L$ that carries a uniform line charge density λ.

EXERCISE 04

Five Gaussian surfaces $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5} each enclose part of this plane.
Compute the electric flux through them.

EXERCISE 05

An infinite slab of charge carrying a uniform volume charge density ρ has its boundaries located at $x=-2$ meters and $x=+2$ meters. It is infinite in the y direction and in the z direction. Two similarly infinite charge sheets (zero thickness) are located at $x=-6 \mathrm{~m}$ and $x=+6 \mathrm{~m}$, with uniform surface charge densities σ_{1} and σ_{2} respectively.

In the accessible regions you've measured the electric field to be:

$$
\vec{E}(x)=\left\{\begin{array}{lr}
\overrightarrow{0}, & x<-6 m \\
\left(10 \frac{N}{C}\right) \vec{\imath}, & -6 m<x<-2 m \\
\left(-10 \frac{N}{C}\right) \vec{\imath}, & 2 m<x<6 m \\
\overrightarrow{0}, & x>6 m
\end{array}\right.
$$

1- What is the charge density ρ of the slab?
2- Find the two surface charge densities σ_{1} and σ_{2} of the left and right charged sheets.

EXERCISE 06

A sphere of radius \mathbf{R} has a uniform volume charge density. Find the electric field and electrical potential at a point outside the sphere and at a point inside the sphere. The electrical potential is zero at "infinity". Plot both the electric field and electrical potential.

EXERCISE 07

A dielectric rod of radius a and length L has a total charge Q and uniform volume charge density ρ. The rod is surrounded by a thin conducting cylinder of radius b and length L. This outer cylinder which is grounder carries a charge of $(-\mathrm{Q})$.
Use Gauss's Law to determine the electric field in the all regions. Deduce the electric potential. Plot both the electric field and electrical potential.

EXERCISE 08

A solid nonconducting sphere of radius R has a nonuniform charge distribution of volume charge density $\rho=\rho_{0} \frac{r}{R}$, where ρ_{0} is a constant and r is the distance from the center of the sphere.
1- Show that the total charge and the field inside the sphere are:

$$
\begin{gathered}
Q=\pi \rho_{0} R^{3} \\
E=k \frac{Q}{R^{4}} r^{2}
\end{gathered}
$$

2- Gives the magnitude of the electric field outside the sphere.

