biolnformatics

The objective of this course introduce and learn students
some software used for simulate and analysis
microbiology data.

Dr Khodja

— SIVs (monkeys)

— HIV (human)
IMMUNODEFICIENCY VIRUS human infection

HIV IS A VIRUS WHICH
ATTACKS IMMUNE SYSTEM
IN HUMANS

Simian immunodeficiency virus (SIV)

e S

mnmm 1

Evolutionary Tree

human HIV/M
human HIV/IM
chimpanzee SIV
chimpanzee SIV
human HIV/N
human HIV/N
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV
chimpanzee SIV

chimpanzee SIV
chimpanzee SIV
human HIV/O
human HIV/O
chimpanzee SIV
chimpanzee SIV
red-capped manabey SIV
drill SIV

vervel monkey SIV
tantalus monkey SIV
sooty mangabey SIV
human HIV/A
human HIV/B

sooty mangabey SIV
Sykes’s monkey SIV

FCALET SPO-HI05C0 IORRCY Do)

GENE-PROTEIN FLOW

—

Transcription Translation

RNA

PROTEIN

Splicing

1.6 Structural bioinformatics

“Structural bioinformatics 1s a subset of Bioinformatics that deals with the predic-
tion and analysis of 3D structure of Macromolecules such as DNA, RNA, and Pro-

teins.” And the second thing which comes 1s why understanding the structure of
macromolecule 1s impﬂrtant. The reasons are first: structure determines function,
so learning structure helps in understanding of function. Secondly the Structure 1s
more conserved than the sequence, hence éﬂﬂbling identification of a much more
distant evolutionary relationship. Thirdly understanding the structural determinants
enables the design and modification of proteins for industrial and medical benefit.
The structural bioinformatics field and concepts related to it offers not only a way
of coordinating views about sequence-structure-function questions but also a mech-
anism for detecting unobserved behavior and proposing novel experiments (Konings
et al., 1987; Schuster et al., 1994).

Programming Strategies*

[dentify the required inputs, such as data or specifications
from the user.

Make an overall design for the program, including listing
all the steps by which the program computes the output.

Decide what will be the output of the program: will the
result be in a file, or displayed on the screen?

Refine the overall design by specifying more detail.

Write the program.

* Adapted from Beginning Perl for Bioinformatics by James Tisdall, Published by O'Reilly Media, Inc_, 2001

Designing a Program

Write pseudocode for a program that computes the GC
percentage composition of a DNA sequence:

m») read DNA sequence from user

w) count the number of C’s in DNA sequence
™) count the number of G’s in DNA sequence
") determine the length of the DNA sequence
Qf’compute the GC#%

" print GC$%

A First Program In Python

read DNA seguence from user
>>> dna = 'acgctcgcgcggcgatagctgatcgatcggcgcgectttttttttaaaag'

count the number of C’s i1in DNA segquence

>>> no_c=dna.count('c’)

count the number of G’s 1n DNA seguence

>>> no _g=dna.count('qg’)
determine the length of the DNA seguence

>>> dna_length=len(dna)

compute the GC% The i) after 100 is only required in Python 2.x

>>> gc_percent=(no_c+no _g)*100.0/dna_length
print GC3%

>>> print(gc_percent)
53.06122448979592

Adding Comments

gc.py
#! /usr/bin/python

man

ookt €“— multiple line comments are included in between “""...
This 1is my first Python program.
It computes the GC content of a DNA sequence.

oo

get DNA sequence: €—everything that follows a # is ignored up to the line end
dna = 'acgctcgcgcggcgatagctgatcgatcggecgegetttttttttaaaag'

no c=dna.count('c') # count C’s i1n DNA sequence

no _g=dna.count(‘qg') # count G’s iIn DNA sequence

dna len=len(dna) # get the length of the DNA sequence
gc_perc=(no_c+no_g)*100.0/dna_len # compute gc percentage
print(gc_perc) # print GC% to screen

Datatypes and operators Operations on strings

Datat es There are a few ways to concatenate or join strings. The easiest and most common
yp way to add join strings is to use the plus symbol (+). i.e., in simplest terms, merely

* int (integers or whole numbers) adding them.

e float (decimal numbers or floatin oint numbers) The “+" operator can be used to combine any number of strings. A critical point
gp to remember is that when adding strings, all datatypes must be strings; for example,

* bool (Boolean or True/False) if users add a string with an integer, such as “PLANT”+4, an error message indicates

 str (string or a collection of characters like a text) that the “str” type and the “int” type cannot be added. To add a number, it must first

. : convert it to the “str’” type using the str (number) function. While integers and strings
e list, Tuple, set (Collection of Items ype usiig (number) - YA MIegers a 8
cannot be added, the same string can be printed several times using the “*" operator

_ : . and a “int” datatype. For instance, “PLANT”*2 returns the string twice, i.e.
Table Assigning variables in Python. ’ ’ ’
shine " “PLANTPLANT".
Table Few methods in strings.
Code Output
Code Output
weight = 75 peptide = 'TSLWGLLFLSAALSLWPTSG'
print(weight) 75 print(peptide.count({'A')) 2
print(peptide.find('LW')) i
print(Len(peptide)) 20
Table . Operations with variables.
Code Output
weight = 75
height = 1.5
bmi = weight/height
orint{bmi) 50.0

Using Python As A Calculator

>>> 545

10
>>>

4.5
>>>

100
>>>

5.0
>>>

2
>>>

17

10.5=-2%*3

10**2 <

17.0 // 3°

5 %« 3 + 2°

** is used to calculate powers

floor division discards the fractional part

the % operator returns the remainder after division

* takes precedence over +, -

Accessing values in list

Like strings, list items also have indexes starting with 07 for forward indexing and
*— 17 for backward indexing

The items inside a list can be accessed using brackets [] and indexes.

Slicing a list allows to access a subset of it. The string slice operator can also slice
lists. Similarly, to string. omitting the first index causes the slice to begin at the
beginning. If the second is absent, the slice ends. If both of them are removed,
the slice i1s a copy of the List

The "+ operator can be used to concatenate two lists and the ***7 operator to
repeat a list any specified number of times.

[‘Moss' 'Embryophyte’ '"Thallophyte' "Conifer']
Forward
indexing 0 1 2 3
Backward
Indexing o - -3 -2 -1

Puthon list indevye<

Table

List slicing.

Code Qutput

not including index 2

print(plants[@&:2]) ['Moss', 'Embryophyte']

everything up to index 3

print(plants[:3]) ["Moss', 'Embryophyte', 'Thallophyte']

index 1 to end of list
print(plants[1:])

Coping whole list
print(plants[:])

['Embryophyte',

["Moss",

'Embryophyte’,

'"Conifer"]

'Thallophyte',

'"Conifer']

'"Thallophyte',

Methods with lists

Python provides some in-built methods for List such as:

count () methods will return the total number of occurrences of an item in the
List.

index () will give the index of an item.

append () adds an item at the end of the List.

remove () will remove the first occurrence of the item in the List.

pop () will remove the item at index provided by the user.

min (), max () and sum () will provide the minimum, maximum and sum of the
lists constituting number values.

len () will provide the total number of items in the List.

sort () method can be used to sort a list of numerical values in increasing or
decreasing order, or a list of string in A-Z or Z-A order.

Dictionary in Python

Dictionaries are data structures in Python that are similar to hash tables or hashmaps
in other computer languages. Each key corresponds to a single value in a dictionary.
The ideal approach to establish a dictionary is to put the key:value pairs inside curly
brackets “{}”. Only *“{}” can declare an empty dictionary

Keys Values

Name < |‘Wheat’

Kingdom - | ‘Plantae’

Genus = ‘Triticum’

Species < | ‘aestivum’

Python dictionary key: Value pairs.

Table Creating a Python dictionary.
Code Output
crop = {} {"Mame': 'Wheat', '"Kingdom':
crop =| '"Plantae', 'Genus':
{'Name':'Wheat', 'Kingdom':'Plantae’, 'Gen | 'Triticum', 'Species':
us':'Triticum', 'Species':'aestivum'} 'aestivum'}
print(crop) <class 'dict'>
print(type(crop))

Conditional statements

Until now, the programmes are simple, not clever, and not making decisions. Con-
ditional statements are required to make a program make decisions based on condi-
tions. Computers have only two states, True or False, like a light switch has two
states, On or Offt. In Python, these True/False situations are known as booleans.

A condition i1s always defined by comparison, such as larger than, less than, or
equal. Here are some comparisons with Python operators:

= Equal: a ==

« Not Equal: a!= Db

« Lessthan: a << b

* Less than or equal to: a <= Db

* Greater than: a > b

e Greater than or equal to: a >= Db

All these comparisons result in Boolean values “True” or *“‘False™.

Logical operators

When comparing many conditions, logical operator are used. The logical operators
“and”, “or”, and “not” are the same in Python as in English. Logic operators usually
work on conditions,

“and” operator will only give true if both the conditions are true, “or” will give
true if either of the conditions is true, lastly “not™ will give just the opposite condi-
tion, 1.e., it will give false for true and true for false.

Table If staterments.

Code

Output

control expression 14

treated expression = 3.5
if control expression >

treated expression:

print(‘downregulated”’)

downregulated

Table If, else statement.
Code Output
control expression = 14
treated expression = 3.5
if control expression > treated expression: - _
=ene 1E&

print('Gene is downregulated')

else:
print('Gene is upregulated’)

downregulated

Table Simple while loop.

Code Output
a =8 0
while a<6: 1
print(a) 2
a = a+l 3
4
5
Table simple “for” loop.
Code Output
plants = ['Moss’, 'Embryophyte', 'Thallophyte','Conifer'] Moss
for plant in plants: Embryophyte
print(plant) Thallophyte
Conifer
Table Python code snippets showing the breaking a loop before its
ending.
Code Output
for temp in plants: Moss
print{temp) Embryophyte
if temp == 'Thallophyte': Thallophyte
break

cO & Copy of basicslipynb
File Edit View Insert Runtime Tools Help

+ Code 4+ Text

oN type using print (type (‘'khodja "))

[1 print(type (5))
2 print{type (3.5))
print (type (3 + 2j))
print { type ("khodja "))

<class "int':
<class "float'»
<class "complex':»
<class "str':»

[1] dna="gatccccccgatattatttgc”
dnal= dna
dna2=dnal.upper()
print{dna2)}

GATCCCCCCGATATTATTTGE
compute the gc % and show it in the monitor

[1 seq="acgctcgcgcggcgatagctttggettt’
cn=seq.count {'c")
gn =seq.count ('g")
1=1len{seq)
gcper=188*(cn +gn)/1
print ('the percentage of gc equals ',gcper)

the percentage of gc equals 68.714285714285715

o
File

+ Co

[]

© O

—
[E—

[]

Copy of basicsl.ipynb

Edit View Insert Runtime Tools Help Laste

de 4+ Text

» copy string (replicate) in membership not in
"atc'+'geg’
"atcgeg’

“Etg“*}

"atgatgatg’

‘atc'*3

"atcatcate’

"atg' in ‘atggccggegta’

True

'n' in ‘atgtgggg’

False

()

<2

£ Copy of basicslipynb

File Edit View Insert Runtime

+ Code

D)

+ Text

dna="gatccccccgatattatitgc
dna[@]

dna[-1]

dna[-2]

dna[@:3]

print (dna[:3])
dna[2:]

len(dna)
dna.count({'c")
dna.count ('gc')
dnal= dna
dna2=dnal.upper()
print (dna)

print (dnal)

print {dna2)}
dna.find ('gc")
dna.find({ 'tat"')
dna.find ('gat',15)
dna.islower ()
dna.isupper()
dna.replace ('c','G")

gat

gatccccccgatattatttoc
gatccoccocgatattatitgce
GATCCCCCCGATATTATTTGE

	Slide 1
	Slide 2
	Slide 3: gfhghg
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

