Sequence Alignment

Objectives

 The overall learning objectives for today's topic are as follow:

- 1. Understand the purpose of aligning sequences.
- Understand the difference between global and local alignment algorithms in terms of specific purpose and usefulness, and alignment matrix.
- Understanding the difference between pairwise and multiple sequence alignment.

- Learning Outcomes

 The students will be able to explain the major steps in pairwise and multiple sequence alignment, explain the principle for, and execute sequence alignment using ClustalX.

Sequence Alignment

– Why Aligning Sequences?

1. Identifying similarity between two sequences

2. Sequence specifies the function of a protein

- 3. Similarity in sequence can imply similarity in function.
 - Assign function to uncharacterized sequences based on characterized sequences

- 4. Sequence from different species can be compared to estimate the evolutionary relationships between species
 - We will come back to this in Phylogenetic trees

Similarity VS Identity

Term 1 – Similarity

- Statistical assessment on how well database and query sequences match that can infer homology.
- 2. This term usually being used in amino acid sequence similarity searching.

Term 2 – Identity

- Sequence identity is the amount of characters which match exactly between two different sequences.
- Hereby, gaps are not counted and the measurement is relational to the shorter of the two sequences.

Global VS Local

Global FTFTALILLAVAV F--TAL-LLA-AV

Type 1 – Global Alignment (The Needleman-Wunsch algorithm)

- A global alignment performs an end-to-end alignment of the query sequence with the reference sequence.
- Ideally, this alignment technique is most suitable for closely related sequences of similar lengths.

Type 2 – Local Alignment (The Smith–Waterman algorithm)

1. A local sequence alignment matches a contiguous sub-section of one sequence with a contiguous sub-section of another.

- Simple Alignment

Alignment

OPTION 1

MATCHED

G

This is a

GAP

- A simple sequence alignment can generate several types of alignment profiles.
- This is because the sequence alignment algorithm will try to find the optimal matching profiles of all the regions in both sequences.
- These algorithms are LOCAL and GLOBAL alignment algorithms which we have discussed in the previous lecture.
- Regardless of these algorithms, the optimal alignment profile is determined by the percentages of matched nucleotides, mismatches and regions of gaps.
- Let's take a look at other types of alignment profiles then.

Simple Alignment

Alignment

Query >	Α	G	T	C	T	Α	G			7nt
Subject >	Α	G	Α	T	T	C	G	Α	G	9nt

OPTION 3

GAPS = 2 MATCHED = 5 MISMATCHED = 2 Meanwhile in the third alignment profile you have 2 gaps, 5 matched and 2 mismatched regions. Did you noticed the difference of alignment profiles with the first profile, the second and the third?

Alignment

GAPS = 4 OPTION 1

Query >	Α	G	T	C	T	Α	G			7nt
Subject >	Α	G	Α	T	Т	C	G	Α	G	9nt

OPTION 3

```
MATCHED = 5
  MATCHED = 6
               Query > A G - T - C T - A G Query > A G T C T - - A G
MISMATCHED = 0
                                                                         MISMATCHED = 2
                                                    | | X X | | |
              Subject > A G A T T C - G A G Subject > A G A T T C G A G
                                                                         GAPS = 4
     GAPS = 2 OPTION 2
                                           OPTION 4
                                         Query > A G - T C T - - A G MATCHED = 6
MISMATCHED = 0
  MATCHED = 6
               Query > A G - - T C T A G
MISMATCHED = 1
                      Subject > A G A T T C G A G
                                            Subject > A G A T - T C G A G
```

Which one has the best optimal alignment?
How do you chose the best alignment?

- Everything seems CORRECT! Don't you think so?
- However, in sequence alignment algorithm, it requires only one arrangement that gives the HIGHEST MATCHED SCORE.
- How do I know which one?

GAPS = 2

 How do you chose which one is the best alignment?

Simple Alignment

Alignment

- The fundamental way to determine which alignment profile has the best optimal sequence alignment is by assigning a different VALUE to GAP, MATCHED and MISMATCHED.
- These values are what we call as PENALTIES, that will be used to assessed the sequence similarities between these sequences.
- You may assign any integers to these penalties but generally we will be using
- · GAP penalty as -2
- MATCHED penalty as 2
- · and MISMATCHED penalty as -1

Scoring Matrix & Dynamic Programming Algorithm

What is Scoring Matrix?

- The aim of a sequence alignment is to match "the most similar elements" of at least two sequences (pairwise alignment). This similarity must be evaluated somehow.
- 2. The previous few slides gave you an overview of how to find the best sequence alignment manually & laborious. Is there any other way?
- The answer is yes we use Scoring Matrix method to align longer and much more complex sequences.
- 4. What type of information can I get from this matrix?

Score: A number used to assess the biological relevance of a finding.

In the context of sequence alignments, a score is a numerical value that describes the overall quality of an alignment. Higher numbers correspond to higher similarity. The score scale depends on the scoring system used.

Alignment

Query >	Α	G	T	C	T	Α	G			7nt
Subject >	Α	G	Α	T	T	C	G	Α	G	9nt

How do I do it?

FIRST:

Assign a value for MATCHED, MISMATCHED and GAP. They could be random values but common practise is '2' for MATCHED penalty, '-2' for GAP penalty and '-1' for MISMATCHED penalty. These values will be used to calculate the probability of highest IDENTITY (how similar they are) between two sequences.

SECOND:

Do the maths! Take a look at the next slide.

Global Alignment

	G	-18							
	Α	-16							
	G	-14							
	U	-12							
SUBJECT	т	-10							
JOBSECT	т	-8							
	A	-6							
	G	-4							
	Α	-2							
	GAP	0	-2	-4	-6	8	-10	-12	-14
		GAP	Α	G	T	C	T	Α	G
QUERY									

What is Scoring Matrix?

- Scoring matrices are used to determine the relative score made by matching two characters in a sequence alignment.
- These are usually the likelihood of two characters being derived from a common ancestral character.

Global Alignment

RULES

- To fill in the empty boxes, you must use the values of GAP, MATCHED and MISMATCHED.
- The values of any box can come from bottom box, left box, and bottom-left box.

	G	-18									
	Α	-16									
	G	-14									
	U	-12									
SUBJECT	Т	-10									
30 DJECT	Т	-8									
	Α	-6									
	G	-4									
	A	-2	→ → →								
	GAP	6	-2	-4	-6	-8	-10	-12	-14		
		GAP	Α	G	T	C	Т	Α	G		
		QUERY									

RULES

- To fill in the empty boxes, you must calculate the value from each direction.
- The highest value will become the new value of that empty box.

A (from Subject) and A (from Query) is a match. Therefore:

NEEDLEMAN WUNSCH ALGORITHM

MATCH:1

MISMATCH: -1

TATGA

	0	-2	-4	-6	-8	-10
T	-2					
A	-4					
A C G	-6					
G	-8					
A	-10					

0	-2
-2	

TOP VALUE *

LEFT VALUE *

DIAGONAL VALUE *

NEEDLEMAN WUNSCH ALGORITHM

GAP '-2

-			_
	\		Λ
	4 1		

	U		4	-0	-8	- 10
$\longrightarrow T$	-2	1				
A	-4					
C	-6					
G	-8					
A	-10					

0	-2
-2	1

NEEDLEMAN WUNSCH ALGORITHM

TATGA TACGA Finally, we have the result of the alignment. Here is the result of the Needleman-Wunsch alignment.

Because it is a global alignment, the full sequence is included and begins and ends on the first and last positions (even if a gap is at the first/last position).

CA-CATA

Scoring Matrix

```
. . C A G C T A
. 0 -1 -2 -3 -4 -5 -6
C -1 1 0 -1 -2 -3 -4
A -2 0 2 1 0 -1 -2
C -3 -1 1 1 2 1 0
A -4 -2 0 0 1 1 2
T -5 -3 -1 -1 0 2 1
A -6 -4 -2 -2 -1 1 3
```

Local Alignment

Query >	Α	G	T	C	T	Α	G			7nt
Subject >	Α	G	Α	T	T	C	G	Α	G	9nt

How do I perform a local alignment using the same sequences?

FIRST:

Assign a value for MATCHED, MISMATCHED and GAP. They could be random values but common practise is '1' for MATCHED penalty, '-1' for GAP penalty and '-1' for MISMATCHED penalty. These values will be used to calculate the probability of highest IDENTITY (how similar they are) between two sequences.

SECOND:

Do the maths! Take a look at the next slide.