DEPARTMENT OF COMPUTER SCIENCE - THIRD YEAR LICENCE (ISIL)

TD 04

Exercise 01

You have the following values of <u>tf</u> of three (3) documents from a collection of 806791 documents, and the values of <u>tf</u> and <u>Idf</u> of four (4) terms:

	Doc 1	Doc 2	Doc 3	term	dft	idft
car	12	25	39	car	18165	
auto	2	33	1	auto	6723	
insurance	0	31	20	insurance	19241	
best	10	0	12	best	25235	

- First, calculate the values of **idf**?
- Compute the two top scoring documents on the query "car car insurance" for the following SMART notation scheme:
 - o nnc.ntc
 - o ltc.lnc

Exercise 02

Considering the following table of count vector (Tf_{raw}) of a 3 documents and query:

	Doc 1	Doc 2	Doc 3	Query
Two	2	0	0	0
Теа	2	2	0	1
Me	0	1	2	1
You	0	1	2	0

- Calculate the idf (inverse document frequency) for each word represented in the three documents.
- What is the result of the query (<u>Tea me</u>) using NTC.NNN smart notation?