الجمهورية الجزائرية الديمقراطية الشعبية PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA وزارة التعليم العالي والبحث العلمي MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH Mohamed Boudiaf University - M'sila

Faculty of Technology Socle Commun (ST) First Year (ST-REE-ING), 2nd Semester Physics practical work II

5th Practical Work Oscilloscope

Date:...../...../...../

Professor:.....

First Name	Last Name	Group	Sub- Group	Prep Mark	Final Mark

Academic Year: 2023/2024

1. Purpose of the experiment

The goal of this work is to manipulate the oscilloscope and the GBF (Low Frequency Generator). Through:

- Know how to use the multiple controls visible on the front of each device.
- Know how to measure amplitude (voltage), frequency and phase shift.

2. Preparation work

Before arriving at the laboratory, try to read and prepare the practical work, discuss the following points:

- Definition and description of a cathode ray oscilloscope,
- Principle of operation and scope of use of an oscilloscope,
- Handling and using an oscilloscope.

3. Manipulation

a. Materials used

- \blacksquare A cathode oscilloscope,
- **4** A DC (contained current) and AC (alternating current) voltage generator,
- ↓ A low frequency generator (GBF),
- **4** Resistor and capacitor boxes,
- **4** Voltmeter (or multimeter).

4 <u>Before you start :</u>

- **4** Locate the buttons on the oscilloscope that allow:
 - a) Turn on the device.
 - b) To adjust the brightness and fineness of the "line or spot".
 - c) To adjust the fineness of the "line or spot".
 - d) To center the "line or spot" on the screen, by, and in,
 - e) To change the scanning speed of the spot.
 - f) To change the vertical sensitivity of channel A (or 1).
- **4** Repair the entrance to the A channels (or 1): YA, Y1 or CH1 and B (or 2): YB, Y2 or CH2

a. Measuring a DC voltage

We give the following assembly:

Figure 1. Assembly 01 in continuous mode.

According to the oscilloscope setting, note:

- \blacksquare The time base used for this application
- 4 Measure the value of E=V with a voltmeter (or multimeter).
- **4** Connect the oscilloscope to the generator according to the assembly shown in figure 1.
- **4** Operate the oscilloscope, then set the axes, the origin of the axes, light spot, etc.
- 4 put the oscilloscope in the DC position, and draw the resulting signal in table1.
- **4** Vary the generator output voltage and observe the signal obtained and complete table 1.

Complete table 1 :

Continuous regime (DC)	U _{Generator} (V)	U Voltmeter (V)	U Oscilloscope (V)
S_h =ms/div S_v =v/div			

b. Measuring frequency and period:

We recall that the frequency f=1/T where T is the period of the signal.

We give the following assembly:

Figure 2 . Assembly 02 in alternative mode.

 \downarrow Do the same work, for an alternative generator.

From the GBF, choose a sinusoidal signal, then complete the following table 2:

4 Measure the amplitude (Ucàc), the maximum value Umax, the period T and the frequency f?

- **4** What does the value measured by the voltmeter (or multimeter) mean in the three cases?
- \downarrow put the oscilloscope in the AC position,

4 Vary the generator output voltage, observe and draw the signal obtained.

Comp	lete	table 2	:
p			•

	Sinusoïdal	Triangular	Square
The signal	S _h =s/div S _v =v/div	S _h =s/div S _v =v/div	S _h =s/div S _v =v/div
U _{Voltmeter} (v)			
U càc (V)			
U _{max} (v)			
U _{eff} (v)			
T (s)			
f=1/T (Hz)			
$f_{\rm GBF}$ (Hz)			

Question: According to the results in table 2, what is the relationship between Ueff and Umax for the three modes of the signal delivered.

4. Conclusion

,