Exercise №1

Consider a mole of gas undergoing isothermal compression from (P_0, T_0) to $(2P_0, T_0)$. Give the expression for the work received by the gas depending on whether it is:

- 1. An ideal gas (we will express W as a function of T_0);
- 2. of a Vander Waals gas: $(P + a / V^2)(V b) = RT$ (we will express W as a function of V_i and V_f the volumes in the initial state and the final state).

 $(2P_0,T_0)$ إلى (P_0,T_0) إلى (P_0,T_0) أعط عبارة العمل المكتسب من الغاز في الحالتين التاليتين:

- 1. إذا كان الغاز مثالي (نعبر عن العمل W بدلالة T_0
- بري المراقب على التوالي.

Exercice №2

We consider two moles of dioxygen, a supposely perfect gas, which can be made to pass reversibly from the initial state $A(P_A, V_A, T_A)$ to the final state $B(P_B=3P_A, V_B, T_B=T_A)$ by three distinct paths:

- 1. path A1B: isothermal transformation;
- 2. path A2B: transformation represented by a straight line portion in Clapeyron P-V diagram;
- 3. path A3B: transformation composed of an isochore then an isobaric.

Represent the three paths in a Clapeyron diagram and calculate in each case the work involved according to T_A. (A.N.: $T_A = 300K$)

التمرين الثاني

نحول مولين من غاز الأكسيجين (نعتبره مثاليا) من الحالة $A(P_A,V_A,T_A)$ إلى الحالة $B(P_B=3P_A,V_B,T_B=T_A)$ بثلاثة مسالك عكوسة مختلفة:

المسلك الأول A 1 B تحول إيزوتارمي، المسلك الأول A 2 B عبارة عن قطعة مستقيمة على مخطط كلابيرون P-V، المسلك الثالث A 2 B تحول إيزوكوري يتبع بتحول إيزوباري. المسلك الثالث A 3 B تحول ايزوكوري يتبع بتحول الأعمال المتبادلة في كل حالة بدلالة A 3 B تتربع على مخطط كلابيرون ثم أحسب الأعمال المتبادلة في كل حالة بدلالة A 30 تتربع . ت.ع. : A 300 مثل المسالك الثلاثة على مخطط كلابيرون ثم أحسب الأعمال المتبادلة في كل حالة بدلالة A 30 تتربع المتبادلة على مخطط كلابيرون ثم أحسب الأعمال المتبادلة في كل حالة بدلالة A 1 تربع المتبادلة وي كل حالة بدلالة A 1 تربع على مخطط كلابيرون ثم أحسب الأعمال المتبادلة في كل حالة بدلالة A 1 تربع المتبادلة وي كل حالة بدلالة A 1 تحول المتبادلة وي كل حالة بدلالة A 1 تحول المتبادلة وي كل 1 تحول المتبادلة وي 1 تح

Exercice №3

The initial state of a mole of g.p is characterized by $P_0 = 2.10^5 Pa$, $V_0 = 14l$. This gas is successively subjected to the following reversible transformations: an isobaric expansion which doubles its volume; an isothermal compression which returns it to its initial volume and finally an isochoric cooling which returns it to the initial state.

- 1. At what temperature is isothermal compression carried out? Deduce the maximum pressure reached.
- 2. Represent the transformation cycle in the P-V diagram.
- 3. Calculate the work and heat exchanged by the system during the cycle, i.e. W_1 , W_2 , W_3 , Q_1 , Q_2 and Q_3 as a function of P_0 , V_0 and $\gamma = c_p / c_v = 1.4$
- 4. Check that $\Delta U=0$ and $\Delta H=0$ for the cycle.

تتميز الحالة الابتدائية لغاز مثالي (واحد مول) بـ $P_0 = 2.10^5 Pa$ و $V_0 = 14l$ نطبق على الغاز سلسلة من التحولات العكوسة التالية: تمدد إيزوباري يؤدي إلى مضاعفة الحجم، ثم انضغاط إيزوتارمي الذي يعيد الغاز إلى حجمه الابتدائي وفي النهاية تبريد إيزوكوري يعيد الغاز إلى حالته الابتدائية.

- ما هي درجة الحرارة التي يتم عندها الانضغاط الإيزوتارمي؟ إستنتج الضغط الأعظمي الذي يبلغه الغاز.
 - مثل الدورة على مخطط كلابيرون P-V.
- $\gamma = c_n / c_v = 1,4$ و P_0, V_0 بدلالة $W_1, W_2, W_3, Q_1, Q_2 et Q_3$ و P_0, V_0 و P_0, V_0 و P_0, V_0 بدلالة P_0, V_0 بدلالة P_0, V_0 و P_0, V_0 و P_0, V_0 أحسب الأعمال و الحرارات المتبادلة خلال الدورة أي:
 - للدورة ككل. $\Delta U = 0$ يأكد من أن $\Delta U = 0$ و $\Delta U = 0$ للدورة ككل.

Exercice No4

An ideal gas passes from a state (P_1, V_1, T_1) to a state (P_2, V_2, T_2) following a reversible adiabatic transformation. We set $\gamma = C_p/C_v = cte$. The gas is compressed and goes from pressure P_1 to pressure $P_2 = 2P_1$. Calculate the work exchanged by the gas and the external environment as a function of P_1 , V_1 et γ . What happens to the work if the gas is suddenly compressed under an external pressure? $P_e = P_2$

$$(P_1 = 1bar, V_1 = 1let\gamma = 1,4.)$$

التمرين الرابع

ينتقل غاز مثالي من الحالة (P_1, V_1, T_1) إلى الحالة (P_2, V_2, T_2) بتحول أديباتي عكوس. نضع $\gamma = C_p/C_v = cte$ يتلقى الغاز خلال هذا التحول إنضغاط يرتفع الضغط من P_1 إلى $P_2=2P_1$. أحسب العمل المتبادل بين الغاز والوسط الخارجي بدلالة P_1 و γ . كم سيكون العمل إذا تلقى الغاز $P_1 = 1bar$, $V_1 = 1l$, $\gamma = 1,4$ يعطى $P_e = P_2$ يعطى خارجى أنضغاط أديباتكيا سريعا تحت ضغط خارجى