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1 Introduction
• In general we do not like to wait. But reduction of the waiting time usually requires extra

investments.
• So we need models and techniques to analyse such situations.
• In this course we treat a number of elementary queueing models.

2 Basic concepts of probability theory
2.1 Random variable
Definition 2.1. Assuming S represents the sample space of any random experiment, a random
variable is defined as a function that assigns a real number to each element (outcome) of S; it can
alternatively be represented by a capital letter (e.g., X,Y ,. . . ). Thus, any random variable X maps
the outcomes of a random experiment to real numbers. This can be expressed as follows:

• A Random variables are denoted by capitals, X, Y , etc.
– The expected value or mean of X is denoted by E(X) and its variance by σ2(X)
– σ(X) is the standard deviation of X.

• An important quantity is the coefficient of variation of the positive random variable X defined as:
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CX = σ(X)
E(X) (1)

• The coefficient of variation is a (dimensionless) measure of the variability of the random variable
X.

3 Useful probability distributions
This section discusses a number of important distributions which have been found useful for describ-

ing random variables in many applications.

3.1 Geometric distribution
• A geometric random variable X with parameter p has probability distribution

P (X = n) = p(̇1− p) (2)
Note that |GX(t)| ≤ 1 for all |t| ≤ 1

GX(0) = p(0), GX(1) = 1, G′

X(1) = E[X] (3)
and, more general,

Gk
X(1) = E[X(X − 1)...(X − k + 1)] (4)

where the superscript (k) denotes the kth derivative.

3.2 Generating function
• Let X be a nonnegative discrete random variable with P (X = xi) = pi, i = 0, 1, 2, ... Then the

generating function PX(z) of X is defined as

GX(t) = E[X t] =
∞∑
i=0

p(X = xi)txi (5)

Note that |GX(t)| ≤ 1 for all |t| ≤ 1
GX(0) = p,0 GX(1) = 1, G′

X(1) = E[X] (6)
and, more general,

G
(k)
X (1) = E[X(X − 1)...(X − k + 1)] (7)

where the superscript k denotes the kth derivative.
• For the generating function of the sum Z = X + Y of two independent discrete random variables
X and Y , it holds that

GZ(t) = GX(t)ĠY (t) (8)

3.3 Laplace-Stieltjes transform
• The Laplace-Stieltjes transform X̃(s) of a nonnegative random variable X with distribution func-

tion F ()̇, is defined as:
X̃(s) = E(e−sX) =

∫ ∞
x=0

e−sxdF (x), s ≥ 0 (9)

• When the random variable X has a density f()̇, then the transform simplifies to:

X̃(s) = E(e−sX) =
∫ ∞
x=0

e−sxf(x)dx, s ≥ 0 (10)

• Note that
∣∣∣X̃(s)

∥∥∥ ≤ 1 for all s ≥ 0. Further

X̃(0) = 1, X̃ ′(0) = −E(X), X̃(k)(0) = (−1)kE(Xk) (11)

• For the transform of the sum Z = X+Y of two independent random variables X and Y , it holds
that:
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Z̃(s) = X̃(s)̇̃Y (s) (12)
.
• When Z is with probability q equal to X and with probability 1− q equal to Y , then:

Z̃(s) = qX̃(s) + (1− q)Ỹ (s) (13)
.

3.4 Poisson distribution
• A Poisson random variable X with parameter λ has probability distribution:

P (X = n) = λn

n! e
−λ (14)

For the Poisson distribution it holds that:

PX(z) == e−λ(1−z), E[X] = σ2(X) = λ, C2
X = 1

λ
(15)

3.5 Exponential distribution
• The density of an exponential distribution with parameter λ is given by:

f(t) = λe−λt, t > 0 (16)

• The distribution function equals:

F (t) = 1− e−λt, t ≥ 0 (17)

• For this distribution we have:
X̃(s) = λ

λ+ s
, E[X] = 1

λ
, σ2(X) = !

λ2 , CX = 1 (18)

• An important property of an exponential random variable X with parameter λ is the memoryless
property. This property states that for all x ≥ 0 and t ≥ 0,

P (X > x+ t/X > t) = P (X > x) = e−λx (19)

3.6 Erlang distribution

• A random variable X has an Erlang-k (k = 1, 2, ...) distribution with mean k

µ
if X is the sum of

k independent random variables X1, ..., Xn having a common exponential distribution with mean
1
µ
. The common notation is Ek(µ) or briefly Ek. The density of an Ek(µ) distribution is given

by:

f(t) = µ
(µt)k−1

(k − 1)!e
−µt, t > 0 (20)

• The distribution function equals:

F (t) = 1−
k−1∑
i=0

(µt)i
(i)! e

−µt, t ≥ 0 (21)

• The parameter µ is called the scale parameter, k is the shape parameter. A phase diagram of the
Ek distribution is shown in
figure 2.1
• In figure 2.2 we display the density of the Erlang-k distribution with mean 1 (so µ = k) for various
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Figure 1: Phase diagram for the Erlang-k distribution with scale parameter µ

values of k.
• The mean, variance and squared coefficient of variation are equal to:

E(X) = k

µ
, σ2(X) = k

µ2 , C2
X = 1

k
. (22)

• The Laplace-Stieltjes transform is given by:

X̃(s) =
(

µ

µ+ s

)2

. (23)

• A convenient distribution arises when we mix an Ek−1 and Ek distribution with thesame scale
parameters. The notation used is Ek−1,k. A random variable X has an Ek−1,k(µ) distribution, if
X is with probability p (resp. 1 − p) the sum of k − 1 (resp. k) independent exponentials with
common mean 1

µ
.

• The density of this distribution has the form:

f(t) = pµ
(µt)k−2

(k − 2)!e
−µt + (1− p)µ (µt)k−1

(k − 1)!e
−µt, t > 0 (24)

• where 0 ≤ p ≤ 1. As p runs from 1 to 0, the squared coeffcient of variation of the mixed Erlang
distribution varies from 1

(k − 1) to 1
k
. It will appear (later on) that this distribution is useful for

fitting a distribution if only the first two moments of a random variable are known.

3.7 Hyperexponential distribution
• A random variable X is hyperexponentially distributed if X is with probability pi, i = 1; . . . ; k

an exponential random variable Xi with mean 1
µi
. For this random variable we use the notation

Hk(p1; . . . ; pk;
1
µ1

; . . . ; 1
µk

), or simply Hk. The density is given by:

f(t) =
k∑
i=1

piµie
−µit, t > 0 (25)

• and the mean is equal to:

E[X] =
k∑
i=1

pi
µi

(26)

• The Laplace-Stieltjes transform satisfies:

X̃(s) =
k∑
i=1

piµi
µi + s

. (27)

• The cofficient of variation Cx of this distribution is always greater than or equal to 1

3.8 Phase-type distribution
The preceding distributions are all special cases of the phase-type distribution. The notation is PH.

This distribution is characterized by a Markov chain with states 1; . . . ; k (the so called phases) and a
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Figure 2: Phase diagram for the hyperexponential distribution

1
µ

2
µ

k

µ
p1 p3 pk−1 pk

1−
p1

1−
p2

1−
p
k

Figure 3: Phase diagram for the hyperexponential distribution

transition probability matrix P which is transient. This means that P n tends to zero as n tends to
infinity. In words, eventually you will always leave the Markov chain. The residence time in state i is
exponentially distributed with mean 1

µi
, and the Markov chain is entered with probability pi in state i,

i = 1; . . . ; k. Then therandom variable X has a phase-type distribution if X is the total residence time
in the preceding Markov chain, i.e. X is the total time elapsing from start in the Markov chain till
departure from the Markov chain. We mention two important classes of phase-type distributions which
are dense in the class of all non-negative distribution functions. This is meant in the sense that for
any non-negative distribution function F(.) a sequence of phase-type distributions can be found which
pointwise converges at the points of continuity of F(.). The denseness of the two classes makes them
very useful as a practical modelling tool. A proof of the denseness can be found in [23, 24]. The first
class is the class of Coxian distributions, notation Ck, and the other class consists of mixtures of Erlang
distributions with the same scale parameters. The phase representations of these two classes are shown
in figures 4 and 5. A random variable X has a Coxian distribution of order k if it has to go through up
to at most k exponential phases. The mean length of phase n is 1

µn
, n = 1; . . . ; k. It starts in phase 1.

After phase n it comes to an end with probability 1− pn and it enters the next phase with probability
pn. Obviously pk = 0. For the Coxian-2 distribution it holds that the squared coefficient of variation is
greater than or equal to 0.5 (see exercise 8). A random variable X has a mixed Erlang distribution of
order k if it is with probability pn the sum of n exponentials with the same mean 1

µn
, n = 1; . . . ; k.

3.9 Fitting distributions
In practice it often occurs that the only information of random variables that is available is their

mean and standard deviation, or if one is lucky, some real data. To obtain an approximating distribution
it is common to t a phase-type distribution on the mean, E(X), and the coefficient of variation, CX , of
a given positive random variable X, by using the following simple approach.
• In case 0 < cX < 1 one fits an Ek−1;k distribution (see subsection 2.4.4). More specically, if

1
k
≤ C2

X ≤
1

k − 1 (28)
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Figure 4: Phase diagram for the mixed Erlang distribution

• for certain k = 2; 3; . . . , then the approximating distribution is with probability p (resp. 1 − p)
the sum of k − 1 (resp. k) independent exponentials with common mean 1

µ
. By choosing

p = 1
1 + C2

X

[
kC2

X −
(
k(1 + C2

X)−K2C2
X

)]
(29)

the Ek−1;k distribution matches E(X) and CX .
• In case CX ≥ 1 one fits a H2(p1; p2;µ1;µ2) distribution. The hyperexponential distribution

however is not uniquely determined by its first two moments. In applications, the H2 distribution
with balanced means is often used. This means that the normalization

p1

µ1
= p2

µ2
(30)

is used,
• The parameters of the H2 distribution with balanced means and fitting E(X) and CX (≥ 1)vare

given by

p1 = 1
2

1 +

√√√√C2
X − 1

C2
X + 1

 , p2 = 1− p1, µ1 = p1

E[X] , µ2 = p2

E[X]
the Ek−1;k distribution matches E(X) and CX .

• In case CX ≥ 1 one fits a H2(p1; p2;µ1;µ2) distribution. The hyperexponential distribution
however is not uniquely determined by its first two moments. In applications, the H2 distribution
with balanced means is often used. This means that the normalization

p1

µ1
= p2

µ2
(31)

is used,
• In case C2

X ≥ 0.5 one can also use a Coxian-2 distribution for a two-moment fit.

µ1 = 2
E[X] , p1 = 0, 5

C2
X

, µ2 = µ2p1

It also possible to make a more sophisticated use of phase-type distributions by, e.g., trying to
match the
rst three (or even more) moments of X or to approximate the shape of X.
Phase-type distributions may of course also naturally arise in practical applications. For example,
if the processing of a job involves performing several tasks, where each task takes an exponential
amount of time, then the processing time can be described by an Erlang distribution.
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