Physics 02: Electricity and magnetism

Series ${ }^{\circ}{ }^{\circ}$ 01: ELECTROSTATICS

Part 2: Continuous distribution and theorem of Gauss

EXERCISE 01

1- The electric field at a point P, located at a distance z from the center of the ring along its axis of symmetry.

$$
\begin{array}{r}
d Q=\lambda \cdot d l=\lambda R \mathrm{~d} \varphi \\
d \vec{E}=d \overrightarrow{E_{1}}+d \overrightarrow{E_{2}} \Rightarrow \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}} \\
\overrightarrow{E_{1}}=\int d \overrightarrow{E_{1}}=k \int \frac{\lambda R \mathrm{~d} \varphi}{r^{2}} \overrightarrow{u_{1}} \\
\overrightarrow{E_{2}}=\int d \overrightarrow{E_{2}}=k \int \frac{\lambda R \mathrm{~d} \varphi}{r^{2}} \overrightarrow{u_{2}} \\
r^{2}=R^{2}+z^{2} \\
\overrightarrow{u_{1}}=\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \vec{k} \\
\overrightarrow{u_{2}}=-\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \vec{k}
\end{array}
$$

$\overrightarrow{E_{1}}=k \int \frac{\lambda R \mathrm{~d} \varphi}{R^{2}+z^{2}}\left(\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \vec{k}\right) \quad, \quad \overrightarrow{E_{2}}=k \int \frac{\lambda R \mathrm{~d} \varphi}{R^{2}+z^{2}}\left(-\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \vec{k}\right)$
$\vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=k \int \frac{\lambda R \mathrm{~d} \varphi}{R^{2}+z^{2}}(2 \cos \theta \vec{k}) \quad, \quad \cos \theta=\frac{z}{r}=\frac{z}{\sqrt{R^{2}+z^{2}}}$

$$
\begin{gathered}
\vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=k \int \frac{\lambda R \mathrm{~d} \varphi}{R^{2}+z^{2}}\left(2 \frac{z}{\sqrt{R^{2}+z^{2}}} \vec{k}\right) \\
\vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=\frac{k \lambda 2 R z}{\left(R^{2}+z^{2}\right)^{3 / 2}} \int_{0}^{\pi} \mathrm{d} \varphi \vec{k} \\
\overrightarrow{\boldsymbol{E}}=\frac{\boldsymbol{k}(\lambda 2 \pi \boldsymbol{R}) \mathbf{z}}{\left(\boldsymbol{R}^{2}+\mathbf{z}^{2}\right)^{3 / 2}} \overrightarrow{\boldsymbol{k}} \\
\boldsymbol{Q}=\lambda 2 \boldsymbol{\pi} \boldsymbol{R} \Rightarrow \overrightarrow{\boldsymbol{E}}=\boldsymbol{k} \frac{\boldsymbol{Q} \boldsymbol{z}}{\left(\boldsymbol{R}^{2}+\mathbf{z}^{2}\right)^{3 / 2}} \overrightarrow{\boldsymbol{k}}
\end{gathered}
$$

2- The electric field at point M on the z -axis a distance z from the center of the disk. (This part was resolved in the course)

$$
\begin{aligned}
& d Q=\sigma \cdot d S=\sigma \rho \mathrm{d} \rho \mathrm{~d} \varphi \\
& \vec{E}=\int d \vec{E}=k \iint \frac{\sigma \rho \mathrm{~d} \rho \mathrm{~d} \varphi}{r^{2}} \overrightarrow{\boldsymbol{u}} \\
& r^{2}=\rho^{2}+z^{2} \\
& \overrightarrow{u_{1}}=\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \vec{k}, \quad \overrightarrow{u_{2}}=-\sin \theta \overrightarrow{u_{\rho}}+\cos \theta \vec{k} \\
& \overrightarrow{\boldsymbol{E}_{1}}=k \iint \frac{\sigma \rho \mathrm{~d} \rho \mathrm{~d} \varphi}{\rho^{2}+z^{2}}\left(\sin \theta \overrightarrow{\boldsymbol{u}_{\rho}}+\cos \theta \overrightarrow{\boldsymbol{k}}\right) \\
& \overrightarrow{\boldsymbol{E}_{2}}=k \iint \frac{\sigma \rho \mathrm{~d} \rho \mathrm{~d} \varphi}{\rho^{2}+z^{2}}\left(-\sin \theta \overrightarrow{\boldsymbol{u}_{\rho}}+\cos \theta \overrightarrow{\boldsymbol{k}}\right) \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=k \iint \frac{\sigma \rho \mathrm{~d} \rho \mathrm{~d} \varphi}{\rho^{2}+z^{2}}(2 \cos \theta \vec{k}) \\
& \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}=\frac{Z}{r}=\frac{Z}{\sqrt{\rho^{2}+z^{2}}} \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=k \iint \frac{\sigma \rho \mathrm{~d} \rho \mathrm{~d} \varphi}{\rho^{2}+z^{2}}\left(2 \frac{z}{\sqrt{\rho^{2}+z^{2}}} \overrightarrow{\boldsymbol{k}}\right) \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=2 k z \iint \frac{\sigma \rho \mathrm{~d} \rho \mathrm{~d} \varphi}{\left(\rho^{2}+z^{2}\right)^{3 / 2}} \vec{k} \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=2 k \sigma \mathrm{z} \int_{0}^{\mathrm{R}} \frac{\rho \mathrm{~d} \rho}{\left(\rho^{2}+z^{2}\right)^{3 / 2}} \int_{0}^{\pi} \mathrm{d} \varphi \vec{k} \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=2 \pi k \sigma z \int_{0}^{\mathrm{R}} \frac{\rho \mathrm{~d} \rho}{\left(\rho^{2}+z^{2}\right)^{3 / 2}} \vec{k} \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=2 \pi k \sigma z\left[\frac{-1}{\sqrt{\rho^{2}+z^{2}}}\right]_{0}^{\mathrm{R}} \vec{k} \\
& \vec{E}=\overrightarrow{E_{1}}+\overrightarrow{E_{2}}=2 \pi k \sigma \mathrm{z}\left(\frac{-1}{\sqrt{\left(R^{2}+z^{2}\right)}}+\frac{1}{\mathrm{z}}\right) \vec{k} \Rightarrow \vec{E}=2 \pi k \sigma\left(1-\frac{\mathrm{z}}{\sqrt{\left(R^{2}+z^{2}\right)}}\right) \overrightarrow{\boldsymbol{k}}
\end{aligned}
$$

The electric field in the case of infinite plane.
Infinite plane $\Rightarrow \mathrm{R} \rightarrow \infty \Rightarrow \overrightarrow{\boldsymbol{E}}=\mathbf{2 \pi} \boldsymbol{k} \boldsymbol{\sigma}\left(\mathbf{1}-\frac{\mathbf{z}}{\sqrt{\left(\infty^{2}+\mathrm{z}^{2}\right)}}\right) \overrightarrow{\boldsymbol{k}}$

$$
\Rightarrow \overrightarrow{\boldsymbol{E}}=2 \pi k \sigma \overrightarrow{\boldsymbol{k}} \Rightarrow \overrightarrow{\boldsymbol{E}}=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}} \overrightarrow{\boldsymbol{k}} \Rightarrow \overrightarrow{\boldsymbol{E}}=\frac{\sigma}{2 \varepsilon_{0}} \overrightarrow{\boldsymbol{k}}
$$

3- The electric field at the point midway between the ring and the sheet.

$$
\vec{E}=\overrightarrow{E_{S}}+\overrightarrow{E_{R}}
$$

According to the previous results:

- the electric field due to the positively charged sheet is:

$$
\overrightarrow{E_{S}}=\frac{\sigma}{2 \varepsilon_{0}} \vec{\imath}
$$

- the electric field due to the positively charged ring is:

$$
\overrightarrow{E_{R}}=-k \frac{Q x}{\left(R^{2}+x^{2}\right)^{3 / 2}} \vec{i}
$$

Where $\mathrm{x}=0.25 \mathrm{~m}$ is the distance from the center of the ring to and R is the radius of the ring.

$$
\begin{gathered}
\vec{E}=\overrightarrow{E_{S}}+\overrightarrow{E_{R}}=\frac{\sigma}{2 \varepsilon_{0}} \overrightarrow{\boldsymbol{\imath}}-k \frac{Q x}{\left(R^{2}+x^{2}\right)^{3 / 2}} \vec{i} \\
\Rightarrow \vec{E}=\overrightarrow{E_{S}}+\overrightarrow{E_{R}}=\left(\frac{\sigma}{2 \varepsilon_{0}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{Q x}{\left(R^{2}+x^{2}\right)^{3 / 2}}\right) \overrightarrow{\boldsymbol{i}} \\
\Rightarrow \vec{E}=\overrightarrow{E_{S}}+\overrightarrow{E_{R}}=\frac{1}{2 \varepsilon_{0}}\left(\sigma-\frac{1}{2 \pi} \frac{Q x}{\left(R^{2}+x^{2}\right)^{3 / 2}}\right) \vec{\imath} \\
\Rightarrow \vec{E}=\overrightarrow{E_{S}}+\overrightarrow{E_{R}}=\frac{1}{2 \times 8.854 \times 10^{-12}}\left(10^{-6}-\frac{1}{2 \pi} \frac{2.5 \times 10^{-6} \times 0.25}{\left(0.2^{2}+0.25^{2}\right)^{3 / 2}}\right) \vec{\imath} \\
\Rightarrow \vec{E}=-1.15 \times 10^{5} \vec{\imath} \Rightarrow E=1.15 \times 10^{5} \mathrm{~N} / C
\end{gathered}
$$

EXERCISE 02

$$
\lambda=\lambda_{0} \cos \theta
$$

1- The relationship between λ_{0}, R and Q.

$$
\begin{gathered}
\boldsymbol{d} \boldsymbol{Q}=\boldsymbol{\lambda} \cdot \boldsymbol{d} \boldsymbol{l}=\lambda_{0} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta } \boldsymbol { R } \mathbf { d } \boldsymbol { \theta }} \\
\Rightarrow d Q=\lambda_{0} R \cos \theta \mathrm{~d} \theta \Rightarrow Q=\lambda_{0} R \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \mathrm{~d} \theta \\
\Rightarrow Q=\lambda_{0} R[\sin \theta]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \Rightarrow \boldsymbol{Q}=\mathbf{2} \boldsymbol{\lambda}_{\mathbf{0}} \boldsymbol{R}
\end{gathered}
$$

2- The force on the charged particle at the center of the semicircle is given by:

$$
\vec{F}=q \vec{E}
$$

The electric field at the origin \vec{E}.

$$
\begin{gathered}
\vec{E}=\int d \vec{E}=k \int \frac{d Q}{R^{2}} \vec{u} \\
\vec{E}=k \int \frac{\lambda_{0} R \cos \theta \mathrm{~d} \theta}{R^{2}} \vec{u} \\
\vec{u}=-\sin \theta \vec{\imath}-\cos \theta \vec{\jmath} \\
\Rightarrow \vec{E}=k \int \frac{\lambda_{0} R \cos \theta \mathrm{~d} \theta}{R^{2}}(-\sin \theta \vec{i}-\cos \theta \vec{j})
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array} { l }
{ \boldsymbol { E } _ { \boldsymbol { x } } = - k \int \frac { \lambda _ { 0 } R \operatorname { c o s } \theta \mathrm { d } \theta } { R ^ { 2 } } \operatorname { s i n } \theta } \\
{ \boldsymbol { E } _ { \boldsymbol { y } } = - k \int \frac { \lambda _ { 0 } R \operatorname { c o s } \theta \mathrm { d } \theta } { R ^ { 2 } } \operatorname { c o s } \theta }
\end{array} \Rightarrow \left\{\begin{array}{l}
\boldsymbol{E}_{\boldsymbol{x}}=-k \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda_{0} R \sin \theta \cos \theta \mathrm{~d} \theta}{R^{2}} \\
\boldsymbol{E}_{\boldsymbol{y}}=-k \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda_{0} R \cos s^{2} \theta \mathrm{~d} \theta}{R^{2}}
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array}{l}
\boldsymbol{E}_{\boldsymbol{x}}=\frac{k}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda_{0}(-2 \sin \theta \cos \theta) \mathrm{d} \theta}{R} \\
\boldsymbol{E}_{\boldsymbol{y}}=-k \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda_{0} R(1+\cos 2 \theta) \mathrm{d} \theta}{2 R^{2}}
\end{array}\right. \\
& \int(-2 \sin \theta \cos \theta) \mathrm{d} \theta=\cos ^{2} \theta, \quad \int(1+\cos 2 \theta) \mathrm{d} \theta=\theta+\frac{\sin 2 \theta}{2} \\
& \Rightarrow\left\{\begin{array}{l}
\boldsymbol{E}_{\boldsymbol{x}}=\frac{k \lambda_{0}}{2 R} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(-2 \sin \theta \cos \theta) \mathrm{d} \theta \\
\left.\boldsymbol{E}_{\boldsymbol{y}}=\frac{-k \lambda_{0}}{2 R} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1+\cos 2 \theta\right) \mathrm{d} \theta
\end{array}\right. \\
& \Rightarrow\left\{\begin{array} { c }
{ E _ { x } = \frac { k \lambda _ { 0 } } { 2 R } [\operatorname { c o s } ^ { 2 } \theta] _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } } \\
{ E _ { y } = \frac { - k \lambda _ { 0 } } { 2 R } [\theta + \frac { \operatorname { s i n } 2 \theta } { 2 }] _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } }
\end{array} \Rightarrow \left\{\begin{array}{c}
E_{x}=0 \\
E_{y}=\frac{-k \lambda_{0}}{2 R}\left[\left(\frac{\pi}{2}+\frac{\sin 2\left(\frac{\pi}{2}\right)}{2}\right)-\left(-\frac{\pi}{2}+\frac{\sin 2\left(-\frac{\pi}{2}\right)}{2}\right)\right]
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array} { c }
{ E _ { x } = 0 } \\
{ E _ { y } = \frac { - k \lambda _ { 0 } } { 2 R } \pi = - \frac { \lambda _ { 0 } } { 2 \times 4 \pi \varepsilon _ { 0 } R } \pi }
\end{array} \Rightarrow \left\{\begin{array}{c}
E_{x}=0 \\
E_{y}=-\frac{\lambda_{0}}{8 R \varepsilon_{0}}
\end{array}\right.\right. \\
& \Rightarrow \overrightarrow{\boldsymbol{E}}=-\frac{\lambda_{0}}{8 R \varepsilon_{0}} \overrightarrow{\boldsymbol{J}}
\end{aligned}
$$

Therefore the force on the charged particle at the point is given by

$$
\vec{F}=q \vec{E} \Rightarrow \overrightarrow{\boldsymbol{F}}=-\frac{\lambda_{0} \boldsymbol{q}}{\mathbf{8 R} \varepsilon_{0}} \overrightarrow{\boldsymbol{J}}
$$

EXERCISE 04

each enclose part of this plane.
Compute the electric flux through the five Gaussian surfaces S_{1}, S_{2}, S_{3}
, S_{4}, and S_{5}.

$$
\begin{gathered}
\Phi=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
\Phi_{1}=\frac{0}{\varepsilon_{0}}=0, \Phi_{2}=\frac{(-7+9+5) 10^{-6}}{8.85 \times 10^{-12}}=79 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C}, \\
\Phi_{3}=\frac{(-10+1+9) 10^{-6}}{8.85 \times 10^{-12}}=0 \mathrm{Nm}^{2} / \mathrm{C}, \Phi_{4}=\frac{(-7+8) 10^{-6}}{8.85 \times 10^{-12}}=101.7 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C} \\
\Phi_{5}=\frac{(-7+9+5+8+10-10) 10^{-6}}{8.85 \times 10^{-12}}=146.9 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C}
\end{gathered}
$$

EXERCISE 05

In the accessible regions you've measured the electric field to be:

$$
\vec{E}(x)=\left\{\begin{array}{lr}
\overrightarrow{0}, & x<-6 m \\
\left(10 \frac{N}{C}\right) \vec{\imath}, & -6 m<x<-2 m \\
\left(-10 \frac{N}{C}\right) \vec{\imath}, & 2 m<x<6 m \\
\overrightarrow{0}, & x>6 m
\end{array}\right.
$$

1- The charge density ρ of the slab.

$$
\begin{gathered}
\emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
\Rightarrow \emptyset=\int \overrightarrow{E_{1}} \cdot d \overrightarrow{S_{1}}+\int \overrightarrow{E_{2}} \cdot d \overrightarrow{S_{2}}+\int \overrightarrow{E_{3}} \cdot d \overrightarrow{S_{3}} \\
\emptyset= \\
E_{1}=E_{1} \cdot d S_{1} \cos 180+\int E_{2} \cdot d S_{2} 180+\int E_{3} \cdot d S_{3} \cos 90 \\
d S_{1}=d S_{2}=d S \\
\Rightarrow \emptyset=-2 E \int d S=-2 E \cdot S=-2 E \pi r^{2} \\
\Rightarrow Q_{\text {enclosed }}=\rho \iiint d v=\rho \int_{0}^{r} r d r \int_{0}^{2 \pi} d \theta \int_{-d}^{d} d l \\
\emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \Rightarrow-2 E\left(\frac{r^{2}}{2}\right)(2 \pi)(2 d) \Rightarrow Q_{\text {enclosed }}=2 \pi d r^{2} \rho \\
\Rightarrow \boldsymbol{\rho}=-\frac{2 d \pi r^{2} \rho}{\varepsilon_{0}} \Rightarrow \rho=-\frac{1}{d} \varepsilon_{0} E \Rightarrow \rho=-\frac{1}{2} \times 8.85 \times 10^{-12} \times 10
\end{gathered}
$$

2- The two surface charge densities σ_{1} and σ_{2} of the left and right charged sheets.

$$
\begin{aligned}
& \emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
& \Rightarrow \emptyset=\int \overrightarrow{E_{1}} \cdot d \overrightarrow{S_{1}}+\int \overrightarrow{E_{2}} \cdot d \overrightarrow{S_{2}}
\end{aligned}
$$

(the curved surface is perpendicular to the electric field)
For the sheet on the left:
We have $E_{2}=0 \Rightarrow \int \overrightarrow{E_{2}} \cdot d \overrightarrow{S_{2}}=0$

$$
\begin{gathered}
\emptyset=\int E_{1} \cdot d S_{1} \cos 0 \\
E_{1}=E \\
d S_{1}=d S_{2}=d S \\
\Rightarrow \emptyset=E \int d S=E \cdot S=E \pi r^{2} \\
Q_{\text {enclosed }}=\sigma_{2} \iint d S=\sigma_{2} \int_{0}^{r} r d r \int_{0}^{2 \pi} d \theta \\
\Rightarrow Q_{\text {enclosed }}=\sigma_{2}\left(\frac{r^{2}}{2}\right)(2 \pi) \Rightarrow Q_{\text {enclosed }}=\sigma_{2} \pi r^{2}
\end{gathered}
$$

$\emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \Rightarrow E \pi r^{2}=\frac{\sigma_{2} \pi r^{2}}{\varepsilon_{0}} \Rightarrow \sigma_{2}=\varepsilon_{0} E \Rightarrow \sigma_{2}=8.85 \times 10^{-12} \times 10$

$$
\Rightarrow \sigma_{2}=8.85 \times 10^{-11} \mathrm{C} / \mathrm{m}^{3}
$$

In a similar manner :

$$
\sigma_{1}=8.85 \times 10^{-11} \mathrm{C} / \mathrm{m}^{3}
$$

EXERCISE 06

The electric field at a point outside the sphere: $\mathbf{r}>\mathbf{R}$

$$
\begin{aligned}
& \emptyset=\oiint \overrightarrow{E_{2}} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
& \mathrm{dV}= r^{2} d r \sin \theta \mathrm{~d} \theta \mathrm{~d} \Phi \Rightarrow \\
& \mathrm{~V}=\int_{0}^{R} r^{2} d r \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \Phi \\
& \Rightarrow \mathrm{~V}=\frac{4}{3} \pi R^{3}
\end{aligned}
$$

we can write: $\mathrm{dV}=4 \pi r^{2} \mathrm{dr}$
$\Rightarrow E_{2} \times S=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}$
$\Rightarrow E_{2} \times 4 \pi r^{2}=\frac{\rho \int_{0}^{R} 4 \pi r^{2} \mathrm{dr}}{\varepsilon_{0}}=\frac{\rho\left(\frac{4}{3} \pi R^{3}\right)}{\varepsilon_{0}}$

$$
\Rightarrow \boldsymbol{E}_{2}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}=\frac{\rho\left(\frac{4}{3} \pi R^{3}\right)}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \Rightarrow \boldsymbol{E}_{2}=\frac{\rho R^{3}}{3 \varepsilon_{0}} \frac{1}{r^{2}}
$$

The electric field at a point inside the sphere: $\mathbf{r}<\mathbf{R}$
$\emptyset=\oiint \overrightarrow{E_{1}} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}$

$$
\begin{gathered}
\mathrm{dV}=r^{2} d r \sin \theta \mathrm{~d} \theta \mathrm{~d} \Phi \Rightarrow \\
\mathrm{~V}=\int_{0}^{R} r^{2} d r \int_{0}^{\pi} \sin \theta \mathrm{d} \theta \int_{0}^{2 \pi} \mathrm{~d} \Phi \\
\Rightarrow \mathrm{~V}=\frac{4}{3} \pi R^{3}
\end{gathered}
$$

We can write: $\mathbf{d V}=4 \pi r^{2} \mathrm{dr}$

$$
\Rightarrow E_{1} \times S=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \Rightarrow E_{1} \times 4 \pi r^{2}=\frac{\rho \int_{0}^{r} 4 \pi r^{2} \mathrm{dr}}{\varepsilon_{0}}=\frac{\rho\left(\frac{4}{3} \pi r^{3}\right)}{\varepsilon_{0}}
$$

$$
\Rightarrow \boldsymbol{E}_{\mathbf{1}}=\frac{\rho\left(\frac{4}{3} \pi r^{3}\right)}{4 \pi \varepsilon_{0}} \frac{\mathbf{1}}{r^{2}} \Rightarrow \boldsymbol{E}_{1}=\frac{\rho}{3 \varepsilon_{0}} \boldsymbol{r}
$$

The electric potential at a point outside the sphere: $\mathbf{r}>\mathbf{R}$

$$
\begin{gathered}
\overrightarrow{\mathrm{E}}=-\overrightarrow{\operatorname{grad} \mathrm{V}} \\
E_{2}=\frac{\rho R^{3}}{3 \varepsilon_{0}} \frac{1}{r^{2}} \Rightarrow E_{2}=-\frac{\partial V_{2}}{\partial r} \Rightarrow d V_{2}=-E_{2} d r \Rightarrow d V_{2}=-\frac{\rho R^{3}}{3 \varepsilon_{0}} \frac{1}{r^{2}} d r \\
\Rightarrow V_{2}=\frac{\rho R^{3}}{3 \varepsilon_{0}} \frac{1}{r}+\mathrm{C}_{2} \\
V_{2}(\infty)=0 \Rightarrow C_{2}=0 \Rightarrow V_{2}=\frac{\rho R^{3}}{3 \varepsilon_{0}} \frac{1}{r}
\end{gathered}
$$

The electric potential at a point outside the sphere: $\mathbf{r}<\mathbf{R}$

$$
\begin{gathered}
\overrightarrow{\overrightarrow{\mathrm{E}}}=-\overline{\mathrm{grad} \mathrm{~V}} \\
E_{1}=\frac{\rho}{3 \varepsilon_{0}} r \Rightarrow E_{1}=-\frac{\partial V_{1}}{\partial r} \Rightarrow d V_{1}=-E_{1} d r \Rightarrow d V_{1}=-\frac{\rho}{3 \varepsilon_{0}} r d r \\
\\
\Rightarrow V_{1}=-\frac{\rho}{6 \varepsilon_{0}} \mathrm{r}^{2}+\mathrm{C}_{1} \\
V_{2}(R)=V_{1}(R) \Rightarrow \frac{\rho R^{2}}{3 \varepsilon_{0}}=-\frac{\rho}{6 \varepsilon_{0}} \mathrm{R}^{2}+C_{1} \Rightarrow C_{1}=\frac{\rho R^{2}}{3 \varepsilon_{0}} \\
\Rightarrow V_{1}=-\frac{\rho}{6 \varepsilon_{0}} \mathrm{r}^{2}+\frac{\rho R^{2}}{3 \varepsilon_{0}}
\end{gathered}
$$

EXERCISE 07

- The electric field in the all regions.

Case 1: $r<a$

$$
\begin{gathered}
\emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
\Rightarrow E_{1} \cdot 2 \pi r L=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \Rightarrow E_{1} \cdot 2 \pi r L=\frac{\iiint \rho \cdot d V}{\varepsilon_{0}} \\
\Rightarrow E_{1} \cdot 2 \pi r L=\frac{\boldsymbol{\rho} \int_{0}^{r} r \mathbf{d r} \int_{0}^{2 \pi} \boldsymbol{\theta} \mathbf{d} \theta \int_{0}^{L} \mathbf{d} z}{\varepsilon_{0}}=\frac{\boldsymbol{\rho}\left(\pi r^{2} \mathbf{L}\right)}{\varepsilon_{0}} \\
\Rightarrow E_{1} \cdot 2 \pi r L=\frac{\boldsymbol{\rho}\left(\pi r^{2} \mathbf{L}\right)}{\varepsilon_{0}} \\
\Rightarrow \boldsymbol{E}_{\mathbf{1}}=\frac{\boldsymbol{\rho}}{2 \varepsilon_{0}} \mathbf{r} \\
\mathrm{r}=\mathrm{a} \Rightarrow \boldsymbol{E}_{\mathbf{1}}(\boldsymbol{a})=\frac{\boldsymbol{\rho}}{2 \varepsilon_{0}} \mathbf{a}
\end{gathered}
$$

Case 2: $a<r<b$
$\Rightarrow E_{2} .2 \pi r L=\frac{\rho \int_{0}^{a} r \mathbf{d r} \int_{0}^{2 \pi} \theta \mathbf{d} \boldsymbol{\theta} \int_{0}^{L} \mathrm{~d} z}{\varepsilon_{0}}$
$\Rightarrow E_{2} .2 \pi r L=\frac{\mathbf{\rho}\left(\pi a^{2} \mathbf{L}\right)}{\varepsilon_{0}} \Rightarrow E=\frac{2 \mathbf{k Q} \mathbf{1}}{L} \frac{\mathbf{1}}{\mathbf{r}}$
$\Rightarrow E_{2} .2 \pi r L=\frac{\rho\left(\pi a^{2} \mathbf{L}\right)}{\varepsilon_{0}} \Rightarrow \boldsymbol{E}_{2}=\frac{\rho a^{2}}{2 \varepsilon_{0}} \frac{\mathbf{1}}{r}$
$\mathrm{r}=\mathrm{b} \Rightarrow E_{2}(\mathrm{~b})=\frac{\rho a^{2}}{2 \varepsilon_{0}} \frac{\mathbf{1}}{\boldsymbol{b}}$
Case 3: $b<r$

$$
\begin{gathered}
\emptyset=\oint_{S} \overrightarrow{E_{3}} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{Q_{1}+Q_{2}}{\varepsilon_{0}}=\frac{\boldsymbol{Q}-\boldsymbol{Q}}{\varepsilon_{\mathbf{0}}}=0 \\
\Rightarrow \boldsymbol{E}_{\mathbf{3}}=\mathbf{0}
\end{gathered}
$$

- The electric potential in the all regions.

$$
\begin{gathered}
\overrightarrow{\mathrm{E}}=-\overrightarrow{\operatorname{grad} \mathrm{V}} \\
E=-\frac{\partial V}{\partial r} \Rightarrow d V=-E d r
\end{gathered}
$$

Case 3: $b<r$

$$
\begin{gathered}
\Rightarrow E_{3}=0 \Rightarrow V_{3}=C_{3}=\text { constant } \\
V_{3}(\infty)=0 \Rightarrow C_{3}=0 \Rightarrow V_{3}=0
\end{gathered}
$$

Case 2: $a<r<b$
$E_{2}=\frac{\rho a^{2}}{2 \varepsilon_{0}} \frac{1}{r} \Rightarrow \int_{V_{a}}^{V_{2}} V_{2}=-\frac{\rho a^{2}}{2 \varepsilon_{0}} \int_{a}^{r} \frac{d r}{r} \Rightarrow V_{2}-V_{a}=-\frac{\rho a^{2}}{2 \varepsilon_{0}}[\ln r]_{a}^{r}=\frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{r}{a}\right)$
$\Rightarrow V_{2}=-\frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{r}{a}\right)+V_{a}$
$\mathrm{r}=\mathrm{b} \Rightarrow V_{2}(\mathrm{~b})=0 \Rightarrow V_{a}=\frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{b}{a}\right)$

$$
\begin{gathered}
\Rightarrow V_{2}=-\frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{r}{a}\right)+\frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{b}{a}\right)=\frac{\rho a^{2}}{2 \varepsilon_{0}}\left[-\ln \left(\frac{r}{a}\right)+\ln \left(\frac{b}{a}\right)\right] \\
=\frac{\rho a^{2}}{2 \varepsilon_{0}}[-\ln (r)+\ln (b)] \\
\Rightarrow V_{2}=\frac{\rho a^{2}}{2 \varepsilon_{0}} \ln \frac{b}{r}
\end{gathered}
$$

Case 1: $r<a$

$$
E_{1}=\frac{\rho}{2 \varepsilon_{0}} \mathbf{r} \Rightarrow V_{1}=-\frac{\rho}{4 \varepsilon_{0}} \mathbf{r}^{2}+\mathrm{C}_{1}
$$

$V_{2}(a)=V_{1}(a) \Rightarrow \frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{b}{a}\right)=-\frac{\rho}{4 \varepsilon_{0}} \mathrm{a}^{2}+\mathrm{C}_{1} \Rightarrow \mathrm{C}_{1}=\frac{\rho a^{2}}{2 \varepsilon_{0}}\left(\ln \frac{b}{a}\right)+\frac{\rho}{4 \varepsilon_{0}} \mathrm{a}^{2}$

$$
\begin{gathered}
\Rightarrow \mathrm{C}_{1}=\frac{\rho \mathrm{a}^{2}}{2 \varepsilon_{0}}\left(\ln \left(\frac{b}{a}\right)+\frac{1}{2}\right) \\
\Rightarrow V_{1}=-\frac{\rho}{4 \varepsilon_{0}} \mathrm{r}^{2}+\frac{\rho \mathrm{a}^{2}}{2 \varepsilon_{0}}\left(\ln \left(\frac{b}{a}\right)+\frac{1}{2}\right) \Rightarrow V_{1}=\frac{\rho}{2 \varepsilon_{0}}\left[-\frac{1}{2} \mathrm{r}^{2}+\mathrm{a}^{2}\left(\ln \left(\frac{b}{a}\right)+\frac{1}{2}\right)\right]
\end{gathered}
$$

EXERCISE 08

$\rho=\rho_{0} \frac{r}{R}$, where ρ_{0} is a constant and r is the distance from the center of the sphere.
1-a- The total charge of the sphere.

$$
\begin{aligned}
d Q=\rho \cdot d V=\rho\left(4 \pi r^{2} d r\right) & \Rightarrow Q=\int_{0}^{R} \rho\left(4 \pi r^{2} d r\right)=\int_{0}^{R}\left(\rho_{0} \frac{r}{R}\right)\left(4 \pi r^{2} d r\right) \\
\Rightarrow & Q=4 \pi \frac{\rho_{0}}{R} \int_{0}^{R} r^{3} d r \\
& \Rightarrow Q=\pi \rho_{0} R^{3}
\end{aligned}
$$

1-b- The magnitude of the electric field inside the sphere.

$$
\begin{gathered}
\emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
\Rightarrow E_{2} \cdot \mathbf{4 \pi \mathbf { r } ^ { 2 }}=\frac{4 \pi \frac{\rho_{0}}{R} \int_{0}^{r} \mathbf{r}^{3} \mathbf{d r}}{\varepsilon_{0}} \Rightarrow E_{2} \cdot 4 \pi r^{2}=\frac{4 \pi \frac{\rho_{0}\left(\frac{r^{4}}{R}\right)}{\varepsilon_{0}} \Rightarrow E_{2}=\frac{\rho_{0}}{4 \varepsilon_{0} R} r^{2}}{\Rightarrow E_{2}=\frac{\pi \rho_{0} R^{3}}{4 \pi \varepsilon_{0} R \cdot R^{3}} r^{2} \Rightarrow \boldsymbol{E}_{2}=\boldsymbol{k} \frac{\mathbf{Q}}{\boldsymbol{R}^{4}} \boldsymbol{r}^{2}} \text { }
\end{gathered}
$$

2- The magnitude of the electric field outside the sphere

$$
\begin{gathered}
\emptyset=\oint_{S} \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
\Rightarrow E_{2} \cdot \mathbf{4 \pi r ^ { 2 }}=\frac{Q}{\varepsilon_{0}} \Rightarrow E_{2} \cdot \mathbf{4 \pi r ^ { 2 }}=\frac{\pi \rho_{0} R^{3}}{\varepsilon_{0}} \\
\Rightarrow \boldsymbol{E}_{\mathbf{2}}=\boldsymbol{k} \boldsymbol{Q} \frac{\mathbf{1}}{\mathbf{r}^{2}} \\
\Rightarrow \boldsymbol{E}_{\mathbf{2}}=\frac{\rho_{0} \boldsymbol{R}^{3}}{\mathbf{4} \varepsilon_{\mathbf{0}}} \frac{\mathbf{1}}{\mathbf{r}^{2}}
\end{gathered}
$$

