Mohamed Boudiaf University of Msila.
جامعـة محمد بوضياف ـالمسيلـة
كليـة العلـوم
Faculty of sciences
Field : Sciences of matter (SM)
$1^{\text {st }} y$ year LMD Semester 02.

Physics 02: Electricity and magnetism

Series \mathbf{N}° 02: CONDUCTORS

EXERCISE 01

1- Determination of the total charge on the inner surface of the small shell.
According to Gauss's law:

$$
\emptyset=\oiint \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{q_{\text {inner }}(S M A L L S H E L L)}{\varepsilon_{0}}
$$

The electric field is zero everywhere inside the conductor

$$
\vec{E}=\overrightarrow{0} \Rightarrow \emptyset=0 \Rightarrow \boldsymbol{q}_{\text {inner }}(\boldsymbol{S M A L L} \boldsymbol{S H} \boldsymbol{L} L \boldsymbol{L})=\mathbf{0}
$$

2- Determination of the total charge on the outer surface of the small shell.
Since no charge resides on the inner surface of the small shell, the total charge of $+2 q$ must reside on its outer surface.

3- Determination of the total charge on the inner surface of the large shell.
According to Gauss's law:
$\emptyset=\oiint \vec{E} \cdot d \vec{S}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{q(S M A L L S H E L L)+q_{\text {inner }}(\text { LARGE SHELL })}{\varepsilon_{0}}$
The electric field is zero everywhere inside the conductor

$$
\begin{aligned}
& \quad \vec{E}=\overrightarrow{0} \Rightarrow \emptyset=0 \Rightarrow Q_{\text {enclosed }}=0 \\
& Q_{\text {enclosed }}=q(S M A L L S H E L L)+q_{\text {inner }}(L A R G E S H E L L)=0 \\
& \Rightarrow \boldsymbol{q}_{\text {inner }}(\text { LARGE SHELLL})=-\boldsymbol{q}(\boldsymbol{S M A L L} \boldsymbol{S H E L L})=-\mathbf{2 q}
\end{aligned}
$$

4- Determination of the total charge on the outer surface of the large shell.

$$
\begin{gathered}
\boldsymbol{q}(\boldsymbol{L A R G E} \boldsymbol{S H E L L})= \\
\Rightarrow-\boldsymbol{q}_{\text {inner }}(\boldsymbol{L A R G E} \boldsymbol{S H E L L})+\boldsymbol{q}_{\text {outer }}(\boldsymbol{L A R G E} \boldsymbol{S H E L L})=\mathbf{4} \boldsymbol{q} \\
\Rightarrow q_{\text {outer }}(L A R G E S H E L L)=+4 q \\
\\
\Rightarrow \boldsymbol{q}_{\text {outer }}(\boldsymbol{L A R G E} \boldsymbol{S H E L L})=+\mathbf{6} \boldsymbol{q}
\end{gathered}
$$

EXERCISE 03

A parallel-plate capacitor has circular plates of 8.2 cm radius and 1.3 mm separation.
1- Calculation of the capacitance.
For a parallel-plate capacitor: $C=\frac{\varepsilon_{0} \cdot S}{d}$
For circular surface: $S=\pi r^{2} \Rightarrow C=\frac{\varepsilon_{0} . \pi r^{2}}{d}=\frac{8.85 \times 10^{-12} \times \pi \times\left(8.2 \times 10^{-2}\right)^{2}}{1.3 \times 10^{-3}}$

$$
\begin{gathered}
\Rightarrow C=1.4 \times 10^{-10} F=140 p F \\
\left(1 \mathrm{pF}=10^{-12} \mathrm{~F}\right)
\end{gathered}
$$

2- The appeared charge on the plates if a potential difference of 120 V is applied.

$$
\begin{gathered}
Q=C V=1.4 \times 10^{-10} \times 120 \\
\Rightarrow Q=1.7 \times 10^{-8} C=17 n C \\
\left(1 \mathrm{nC}=10^{-9} \mathrm{C}\right)
\end{gathered}
$$

EXERCISE 04

The total capacitance C_{eq} between A and B :
Association in series: $\frac{1}{C_{e q}}=\sum_{i=1}^{n} \frac{1}{C_{i}}$
Association in parallel: $C_{e q}=\sum_{i=1}^{n} C_{i}$

EXERCISE 05

$C_{1}=12 \mu F, C_{2}=2 \mu F, C_{3}=4 \mu F, \mathrm{~V}=12 \mathrm{~V}$
1 - The charge and the voltage across each capacitor.
the equivalent capacitance between points A and B

2-The energy stored in each capacitor.

$$
E=\frac{1}{2 C} Q^{2}=\frac{1}{2} C V^{2}
$$

So:

$$
\begin{gathered}
E_{1}=\frac{1}{2} C_{1} V_{1}^{2}=\frac{1}{2} 12 \times 4^{2}=96 \mu \mathrm{~J} \\
E_{2}=\frac{1}{2} 2 \times 8^{2}=64 \mu \mathrm{~J}
\end{gathered}
$$

$$
E_{3}=\frac{1}{2} 4 \times 8^{2}=128 \mu \mathrm{~J}
$$

The total energy stored in this network is:

$$
E=E_{1}+E_{2}+E_{3}=288 \mu \mathrm{~J}=\frac{1}{2} C_{e q} V^{2}
$$

EXERCISE 06

$C_{1}=1 p F, C_{2}=2 p F, C_{3}=4 p F, C_{4}=5 p F$
1- The equivalent capacitance between points A and B .

$$
C_{e q}=2.25 \mathrm{pF}
$$

2- Calculate the charge on each capacitor if $\mathrm{V}_{\mathrm{AB}}=12 \mathrm{~V}$.

$$
\begin{gathered}
Q=C_{e q} V=2.25 \times 12 \Rightarrow Q=27 \mathrm{pC} \\
Q=Q_{12}=Q_{34}=27 \mathrm{pC}\left(C_{12} \text { and } C_{34} \text { are in series }\right) \\
V=V_{12}+V_{34} \\
V_{12}=V_{1}=V_{2}, \quad Q_{12}=Q_{1}+Q_{2} \\
V_{12}=V_{1}=V_{2} \Rightarrow \frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}} \Rightarrow Q_{1}=\frac{C_{1}}{C_{2}} Q_{2} \\
Q_{12}=Q_{1}+Q_{2}=\frac{C_{1}}{C_{2}} Q_{2}+Q_{2} \\
\Rightarrow Q_{2}=\frac{C_{2}}{C_{1}+C_{2}} Q_{12} \\
Q_{1}=\frac{c_{1}}{c_{2}} Q_{2} \Rightarrow Q_{1}=\frac{1}{2} 18 \Rightarrow Q_{1}=9 p C \\
V_{34}=V_{3}=V_{4}, \quad Q_{34}=Q_{3}+Q_{4} \\
V_{34}=V_{3}=V_{4} \Rightarrow \frac{Q_{3}}{C_{3}}=\frac{Q_{4}}{C_{4}} \Rightarrow Q_{3}=\frac{C_{3}}{C_{4}} Q_{4} \\
Q_{34}=Q_{3}+Q_{4}=\frac{C_{3}}{C_{4}} Q_{4}+Q_{4}
\end{gathered}
$$

$$
\begin{gathered}
\Rightarrow Q_{4}=\frac{C_{4}}{c_{3}+C_{4}} Q_{34} \\
\Rightarrow Q_{4}=\frac{5}{4+5} 27 \Rightarrow Q_{4}=15 \mathrm{pC} \\
Q_{3}=\frac{c_{3}}{c_{4}} Q_{4} \Rightarrow Q_{3}=\frac{4}{5} 15 \Rightarrow Q_{3}=12 p C
\end{gathered}
$$

3- The voltage across each capacitor.

$$
\begin{gathered}
V_{1}=\frac{Q_{1}}{c_{1}}=\frac{9}{1} \Rightarrow V_{1}=9 \mathrm{~V} \\
V_{2}=\frac{Q_{2}}{c_{2}}=\frac{18}{2} \Rightarrow V_{2}=9 \mathrm{~V} \\
V_{1}=V_{2}\left(C_{1} \text { and } C_{2} \text { are in parallel }\right) \\
V_{3}=\frac{Q_{3}}{c_{3}}=\frac{12}{4} \Rightarrow V_{3}=3 \mathrm{pV} \\
V_{4}=\frac{Q_{4}}{C_{4}}=\frac{15}{5} \Rightarrow V_{1}=3 \mathrm{pV} \\
V_{3}=V_{4}\left(C_{3} \text { and } C_{4} \text { are in parallel }\right) \\
V=V_{12}+V_{34}\left(C_{12} \text { and } C_{34} \text { are in parallel }\right)
\end{gathered}
$$

